Publications

PHASE 2: October 1st 2021 - September 30th 2025

149) J. Višňák, J. Brandejs, M. Máté, L. Visscher, Ö. Legeza, J. Pittner, "DMRG-tailored coupled cluster method in the 4c-relativistic domain: General implementation and application to the NUHFI and NUF3 molecules", arXiv preprint (2024); arXiv:2403.18473

148) A. Tichai, K. Kapás, T. Miyagi, M. A. Werner, Ö. Legeza, A. Schwenk, G. Zarand, "Spectroscopy of N=50 isotones with the valence-space density matrix renormalization group", arXiv preprint (2024); arXiv:2402.18723

147) P. Penc, C. Paşcu Moca, Ö. Legeza, T. Prosen, G. Zaránd, M. A. Werner, "Loss-induced quantum information jet in an infinite temperature Hubbard chain", arXiv preprint (2024); arXiv:2402.19390

146) S. Hirata, I. Grabowski, R.J. Bartlett, "Failures of the Feynman-Dyson diagrammatic perturbation expansion of propagators", arXiv preprint (2023); arXiv:2312.03157

145) A. Menczer, K. Kapás, M. A. Werner, Ö. Legeza, "Two dimensional quantum lattice models via mode optimized hybrid CPU-GPU density matrix renormalization group method", arXiv preprint (2023); arXiv:2311.14106

144) B. Osváth, G. Barcza, Ö. Legeza, B. Dóra, L. Oroszlány, "A simple electronic ladder model harboring ℤ4 parafermions", arXiv preprint (2023); arXiv:2311.07359

143) A. Menczer, Ö. Legeza, "Boosting the effective performance of massively parallel tensor network state algorithms on hybrid CPU-GPU based architectures via non-Abelian symmetries", arXiv preprint (2023); arXiv:2309.16724

142) A. Menczer, Ö. Legeza, "Massively Parallel Tensor Network State Algorithms on Hybrid CPU-GPU Based Architectures", arXiv preprint (2023); arViv:2305.05581v1

141) D. Szombathy, M. A. Werner, C. P. Moca, Ö. Legeza, A. Hamo, S. Ilani, G. Zaránd, "Collective Wigner crystal tunneling in carbon nanotubes", arXiv preprint (2023); arXiv:2306.15985

140) R. Babar, G. Barcza, A. Pershin, H. Park, O. Bulancea Lindvall, G. Thiering, Ö. Legeza, J. H. Warner, I. A. Abrikosov, A. Gali, V. Ivady, "Quantum sensor in a single layer van der Waals material", arXiv preprint (2023); arXiv:2111.09589

139) G. D. Santis, Y. Okura, K. Hirata, S.-I. Ishiuchi, M. Fujii, and S. S. Xantheas, "Affinity of nicotinoids to a model nicotinic acetylcholine receptor (nAChR) binding pocket in the human brain", Gregory A. Voth Festschrift (invited), Journal of Physical Chemistry B in press (2024); DOI:10.1021/acs.jpcb.3c07919

138) F. D. Vila, J. J. Rehr, K. Kowalski, and B. Peng, "RT-EOM-CCSD Calculations of Inner and Outer Valence Ionization Energies and Spectral Functions", Journal of Chemical Theory and Computation 20 (5), pp. 1796-1801 (2024);DOI:10.1021/acs.jctc.3c01371

137) D. Mejia-Rodriguez, "Exploiting a derivative discontinuity estimate for accurate G0W0 ionization potentials and electron affinities", Electronic Structure 6, 015012 (2024); DOI:10.1088/2516-1075/ad3124

136) R. Zuzak, M. Kumar, O. Stoica, D. Soler, J. Brabec, K. Pernal, L. Veis, R. Blieck, A. Echavarren, P. Jelinek, S. Godlewski, "On-Surface Synthesis and Determination of the Open-Shell Singlet Ground State of Tridecacene", Angewandte Chemie 136 (9), e202317091 (2024); DOI:10.1002/ange.202317091

135) S. Song, A. Pinar Solé, A. Matěj, G. Li, O. Stetsovych, D. Soler, H., M. Telychko, J. Li, M. Kumar, J. Brabec, L. Veis, J. Wu, P. Jelinek, J. Lu, "Highly-Entangled Polyradical Nanographene with Coexisting Strong Correlation and Topological Frustration", Nature Chemistry 16, (2024); DOI:10.1038/s41557-024-01453-9

134) H. Helal, J. Firoz, J. A. Bilbrey, H. Sprueill, K. M. Herman, M. M. Krell, T. Murray, M. L. Roldan, M. Kraus, A. Li, P. Das, S. S. Xantheas, and S. Choudhury, "Acceleration of Graph Neural Network-based Prediction Models in Chemistry via Co-design Optimization on Intelligence Processing Units", Journal of Chemical Information and Modeling 64 (5), pp. 1568–1580 (2024) DOI:10.1021/acs.jcim.3c01312

133) D. Tzeli and S. S. Xantheas, "Erratum: Breaking covalent bonds in the context of the many-body expansion (MBE). I. The purported ‘first row anomaly’ in XHn (X = C, Si, Ge, Sn; n = 1–4)” [J. Chem. Phys. 156, 244303 (2022)]", Journal of Chemical Physics 160, 059901 (2024) DOI:10.1063/5.0196893

132) G. Friesecke, G. Barcza, Ö. Legeza, "Predicting the FCI energy of large systems to chemical accuracy from restricted active space density matrix renormalization group calculations", Journal of Chemical Theory and Computation 20 (1), pp. 87-102 (2024); DOI:10.1021/acs.jctc.3c01001

131) T. H. Dunning, Jr., D. L. Cooper, L. T. Xu, and P. B. Karadakov, "Spin-coupled generalized valence bond theory: An appealing orbital theory of the electronic structure of atoms and molecules", in Comprehensive Computational Chemistry, eds. R. J. Boyd and M. Yáñez, (Elsevier, 2022), Comprehensive Computational Chemistry 1, pp. 354-402 (2024); DOI:10.1016/B978-0-12-821978-2.00017-9

130) O. Demel, J. Brandejs, J. Lang, J. Brabec, L. Veis, Ö. Legeza, J. Pittner, "Hilbert space multireference coupled clusters tailored by matrix product states", The Journal of Chemical Physics 159 (22), 224115 (2023); DOI:10.1063/5.0174461

129) F. Gebhard, K. Bauerbach, Ö. Legeza, "Generic Mott-Hubbard phase diagram for extended Hubbard models without Umklapp scattering", Phys. Rev. B 108 (20), 205130 (2023); DOI:10.1103/PhysRevB.108.205130

128) D. Drwal, M. Matousek, P. Golub, A. Tucholska, M. Hapka, J. Brabec, L. Veis, K. Pernal, "The role of spin polarization and dynamic correlation in singlet-triplet gap inversion of heptazine derivatives", Journal of Chemical Theory and Computation 19 (21), pp. 7606-7616 (2023); DOI:10.1021/acs.jctc.3c00781

127) D. Mejia-Rodriguez, A. A Kunitsa, J. L. Fulton, E. Aprà, N. Govind, "G0W0 Ionization Potentials of First-Row Transition Metal Aqua Ions", Journal of Physical Chemistry A 127 (46), pp. 9684-9694 (2023); DOI:10.1021/acs.jpca.3c04419

126) Z. Benedek, R. Babar, Á. Ganyecz, T. Szilvási, Ö. Legeza, G. Barcza and V. Ivády, "Symmetric carbon tetramers forming spin qubits in hexagonal boron nitride", npj Computational Materials 9, 187 (2023); DOI:10.1038/s41524-023-01135-z

125) J. P. Heindel, K. M. Herman, and Sotiris S. Xantheas, "Many-Body Effects in Aqueous Systems: Synergies Between Interaction Analysis Techniques and Force Field Development", Annual Review of Physical Chemistry 74, pp. 337-360 (2023); DOI:10.1146/annurev-physchem-062422-023532

124) A. Tichai, S. Knecht, A. T. Kruppa, Ö. Legeza, C. P. Moca, A. Schwenk, M. A. Werner, G. Zarand, "Combining the in-medium similarity renormalization group with the density matrix renormalization group: Shell structure and information entropy", Physics Letters B 845 (10), 138139 (2023); DOI:10.1016/j.physletb.2023.138139

123) M. A. Werner, C. P. Moca, M. Kormos, Ö. Legeza, B. Dora, and G. Zarand, "Spectroscopic evidence for engineered hadron formation in repulsive fermionic SU(N) Hubbard Models", Physical Review Research 5 (4), 043020 (2023); DOI:10.1103/PhysRevResearch.5.043020

122) K. M. Herman, A. J. Stone and S. S. Xantheas, "Accurate Calculation of Many-Body Energies in Water Clusters Using a Classical Geometry-Dependent Induction Model", Journal of Chemical Theory and Computation 19 (19), pp. 6805-6815 (2023); DOI:10.1021/acs.jctc.3c00575

121) R. Di Felice, M. L. Mayes, R. M. Richard, D. B. Williams-Young, G. Kin-Lic Chan, W. A. de Jong, N. Govind, M. Head-Gordon, M. R. Hermes, K. Kowalski, X. Li, H. Lischka, K. T. Mueller, E. Mutlu, A. M. N. Niklasson, M. R. Pederson, B. Peng, R. Shepard, E. F. Valeev, M. van Schilfgaarde, B. Vlaisavljevich, T. L. Windus, S. S. Xantheas, X. Zhang, and P. M. Zimmerman, "A Perspective on Sustainable Computational Chemistry Software Development and Integration", Journal of Chemical Theory and Computation 19 (20), pp. 7056-7076 (2023); DOI:10.1021/acs.jctc.3c00419

120) X. Qin, S. Hirata, "Finite-temperature many-body perturbation theory for vibrations: Recursions, algebraic reduction, second-quantized reduction, diagrammatic rules, linked-diagram theorem, finite-temperature self-consistent field, and general-order algorithm", The Journal of Chemical Physics 159 (8), 084114 (2023); DOI:10.1063/5.0164326

119) E. Mutlu, A. Panyala, K. Kowalski, N. Bauman, B. Peng, J. Brabec, S. Krishnamoorthy, "TAMM: Tensor Algebra for Many-body Methods", The Journal of Chemical Physics 159 (2), 024801 (2023); DOI:10.1063/5.0142433

118) D. Mejia-Rodriguez, E. Aprà, J. Autschbach, Ni. P. Bauman, E. J. Bylaska, N. Govind, J. R. Hammond, K. Kowalski, A. Kunitsa, A. Panyala, B. Peng, J. J. Rehr, H. Song, S. Tretiak, M. Valiev, and F. D. Vila, "NWChem: Recent and Ongoing Developments", Journal of Chemical Theory and Computation 19 (20), pp. 7077–7096 (2023); DOI:10.1021/acs.jctc.3c00421

117) D. B. Williams-Young, N. M. Tubman, C. Mejuto-Zaera, W. A. de Jong "A parallel, distributed memory implementation of the adaptive sampling configuration interaction method", The Journal of Chemical Physics 158 (21), 214109 (2023); DOI:10.1063/5.0148650

116) H. Pathak, A. Panyala, B. Peng, N. P. Bauman, E. Mutlu, J. J. Rehr, F. D. Vila, K. Kowalski, "Real-Time Equation-of-Motion Coupled-Cluster Cumulant Green’s Function Method: Heterogeneous Parallel Implementation Based on the Tensor Algebra for Many-Body Methods Infrastructure", Journal of Chemical Theory and Computation 19 (8), pp. 2248-2257 (2023); DOI:10.1021/acs.jctc.3c00045

115) S. Hirata, Y. Shigeta, S. S. Xantheas, R. J. Bartlett, "Helical organic and inorganic polymers", The Journal of Physical Chemistry virtual Special Issue (invited) "MQM 2022: The 10th Triennial Conference on Molecular Quantum Mechanics", The Journal of Physical Chemistry B 127 (15), pp. 3556-3583 (2023); DOI:10.1021/acs.jpcb.3c00620

114) T. Depastas, G. A. Souliotis, D. Tzeli, and S. S. Xantheas, "Many-body expansion for light nuclear systems", Physical Review C 107, 044004 (2023); DOI:10.1103/PhysRevC.107.044004

113) T. H. Dunning, Jr., M. S. Gordon and S. S. Xantheas, "The nature of the chemical bond", invited Editorial, The Journal of Chemical Physics 158 (13), 130401 (2023); DOI:10.1063/5.0148500

112) A. Shee, C.-N. Yeh, B. Peng, K. Kowalski, D. Zgid, "Triple excitations in Green's function coupled cluster solver for studies of strongly correlated systems in the framework of self-energy embedding theory", The Journal of Physical Chemistry Letters 14 (9), pp. 2416-2424 (2023); DOI:10.1021/acs.jpclett.2c03616

111) J. P. Unsleber, H. Liu, L. Talirz, T. Weymuth, M. Mörchen, A. Grofe, D. Wecker, C. J. Stein, A. Panyala, B. Peng, K. Kowalski, M. Troyer, M. Reiher, "High-throughput ab initio reaction mechanism exploration in the cloud with automated multi-reference validation", The Journal of Chemical Physics 158 (8), 084803 (2023); DOI:10.1063/5.0136526

110) M. Matoušek, M. Hapka, L. Veis, K. Pernal, "Toward more accurate adiabatic connection approach for multireference wave functions", The Journal of Chemical Physics 158 (5), 054105 (2023); DOI:10.1063/5.0131448

109) M. Máté, K. Petrov, S. Szalay, Ö. Legeza, "Compressing multireference character of wave functions via fermionic mode optimization", Journal of Mathematical Chemistry 61, pp. 362-375 (2023); DOI:10.1007/s10910-022-01379-y

108) K. M. Herman and S. S. Xantheas, "A Formulation of the Many-Body Expansion (MBE) for Periodic Systems: Application to Several Ice Phases", The Journal of Physical Chemistry Letters 14 (4), pp. 989-999 (2023); DOI: 10.1021/acs.jpclett.2c03822

107) P. Beran, K. Pernal, F. Pavošević, and L. Veis, ”Projection-Based Density Matrix Renormalization Group in Density Functional Theory Embedding”, The Journal of Physical Chemistry Letters 14 (3), pp. 716-722 (2023); DOI: 10.1021/acs.jpclett.2c03298

106) P. Golub, A. Antalik, P. Beran, J. Brabec, ”Mutual information prediction for strongly correlated systems”, Chemical Physics Letters 813, 140297 (2023); DOI: 10.1016/j.cplett.2023.140297

105) K. M. Herman , E. Aprà and S. S. Xantheas, "A critical comparison of CH…π versus π…π interactions in the benzene dimer: obtaining benchmarks at the CCSD(T) level and assessing the accuracy of lower scaling methods", Physical Chemistry Chemical Physics 25 (6), pp. 4824-4838 (2023); DOI: 10.1039/D2CP04335A

104) T. H. Dunning, Jr. and L. T. Xu "Dynamical electron correlation and the chemical bond. II. Recoupled pair bonds in the a4Σ− states of CH and CF ", The Journal of Chemical Physics 157 (8), 084124 (2022); DOI:10.1063/5.0104693

103) A. Bagusetty, A. Panyala, G. Brown and J. Kirk, "Towards Cross-Platform Portability of Coupled-Cluster Methods with Perturbative Triples using SYCL", 2022 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC), pp. 81-88, Dallas, TX, USA (2022); DOI: 10.1109/p3hpc56579.2022.00013

102) G. Barcza, M. A. Werner, G. Zarand, Ö. Legeza, T. Szilvasi, ”Toward large-scale restricted active space calculations inspired by the Schmidt decomposition”, The Journal of Physical Chemistry A 126 (51), pp. 9709-9718 (2022); DOI: 10.1021/acs.jpca.2c05952

101) F. Gebhard, K. Bauerbach, Ö. Legeza, "Accurate localization of Kosterlitz-Thouless-type quantum phase transitions for one-dimensional spinless fermions", Physical Review B 106, 205133 (2022); DOI: 10.1103/PhysRevB.106.205133

100) M. Z. Makoś, P. K. Gurunathan, S. Raugei, K. Kowalski, V. A. Glezakou, and R. Rousseau, "Modeling Absolute Redox Potentials of Ferrocene in the Condensed Phase", The Journal of Physical Chemistry Letters 13 (42), pp. 10005-10010 (2022); DOI: 10.1021/acs.jpclett.2c02447

99) G. Barcza, A. Pershin, A. Gali and Ö. Legeza, "Excitation spectra of fully correlated donor-acceptor complexes by density matrix renormalisation group", Molecular Physics 120, e2130834 (2022); DOI: 10.1080/00268976.2022.2130834

98) Saad Qadeer, G. D. Santis, P. Stinis and S. S. Xantheas, “Vibrational Levels of a Generalized Morse Potential” The Journal of Chemical Physics 157, 144104 (2022); DOI:10.1063/5.0103433

97) X. Ma, M. Rohdenburg, H. Knorke, S. Kawa, J. K. Liu, E. Aprà, K. R. Asmis, V. A. Azov, J. Laskin, C. Jenne, H. I.Kenttamaa and J. Warneke, "Binding of Saturated and Unsaturated C6-Hydrocarbons to the Electrophilic Anion [B12Br11]: A Systematic Mechanistic Study", Physical Chemistry Chemical Physics 24 (36), pp. 21759-21772 (2022); DOI:10.1039/d2cp01042a

96) J. Kovács, A. T. Kruppa, P. Salamon, Ö. Legeza, G. Zaránd, "Entanglement and seniority", Physical Review C 106, 024303 (2022); DOI:10.1103/PhysRevC.106.024303

95) V. Prabhakaran, J. Romo, A. Bhattarai, K. George, Z. M. Norberg, D. Kalb, E. Aprà, P. A. Kottke, A. Fedorov, P. Z. El-Khoury, G. E. Johnson, J. Laskin, "Integrated Photoelectrochemical Energy Storage Cells Prepared by Benchtop Ion Soft Landing", Chemical Communications 58 (65), pp. 9060-9063 (2022); DOI:10.1039/D2CC02595G

94) J. Mato, D. Tzeli and S. S. Xantheas, "The Many-Body Expansion for Metals I: The Alkaline Earth metals Be, Mg, and Ca" Special Issue "Nature of the Chemical Bond" (invited), The Journal of Chemical Physics 157, 084313 (2022); DOI:10.1063/5.0094598

93) D. Mejia-Rodriguez, A. Kunitsa, E. Aprà, N. Govind, "Basis Set Selection for Molecular Core-Level GW Calculations" Journal of Chemical Theory and Computation 18 (8), pp. 4919-4926 (2022); DOI:10.1021/acs.jctc.2c00247

92) F. D. Vila, J. J. Rehr, H. Pathak, B. Peng, A. Panyala, E. Mutlu, N. P. Bauman, K. Kowalski, "Real-time equation-of-motion CC cumulant and CC Green's function simulations of photoemission spectra of water and water dimer", The Journal of Chemical Physics 157, 044101 (2022); DOI:10.1063/5.0099192

91) L. T. Xu and T. H. Dunning, Jr., "Dynamical electron correlation and the chemical bond. I. Covalent bonds in AH and AF (A = B–F)", Special Issue "Nature of the Chemical Bond" (invited), The Journal of Chemical Physics 157, 014107 (2022); DOI:10.1063/5.0093414

90) K. M. Herman, A. J. Stone and S. S. Xantheas, "A Classical Model for 3-body Interactions in Aqueous Ionic Systems", Special Issue "Nature of the Chemical Bond" (invited), selected to appear in the American Institute of Physics (AIP) Showcase on "Kudos" "https://www.growkudos.com/publications/10.1063%25252F5.0095739/reader, The Journal of Chemical Physics 157, 024101 (2022); DOI: 10.1063/5.0095739

89) D. Tzeli and S. S. Xantheas, "Breaking Covalent Bonds in the Context of the Many-Body Expansion (MBE): I. The purported "first row anomaly" in XHn (X = C, Si, Ge, Snl n= 1-4)", Special Issue "Nature of the Chemical Bond" (invited), The Journal of Chemical Physics 156, 244303 (2022); DOI:10.1063/5.0095329

88) S. Hirata, "Nonvanishing quadrature derivatives in the analytical gradients of density functional energies in crystals and helices", Peter Gill Special Issue (invited), Molecular Physics, e2086500 (2022); DOI:10.1080/00268976.2022.2086500

87) J. C. Cruz, J. Garza, T. Yanai, S. Hirata, "Stochastic evaluation of four-component relativistic second-order many-body perturbation energies: A potentially quadratic-scaling correlation method", The Journal of Chemical Physics 156, 224102 (2022); DOI:10.1063/5.0091973

86) C. P. Moca, M. A. Werner, Ö. Legeza, T. Prosen, M. Kormos, G. Zaránd, "Simulating Lindbladian evolution with non-abelian symmetries: Ballistic front propagation in the SU(2) Hubbard model with a localized loss", Physical Review B 105, 195144 (2022); DOI:10.1103/PhysRevB.105.195144

85) S. Hirata, "General solution to the Kohn-Luttinger nonconvergence problem", Chemical Physics Letters 800, 139668 (2022); DOI:10.1016/j.cplett.2022.139668

84) P. Pokhilko, C.-N. Yeh, D. Zgid, "Iterative subspace algorithms for finite-temperature solution of Dyson equation" The Journal of Chemical Physics 156, 094101 (2022); DOI:10.1063/5.0082586

83) G. Friesecke, B. R. Graswald, Ö. Legeza, "Exact matrix product state representation and convergence of a fully correlated electronic wavefunction in the infinite basis limit", Physical Review B 105, 165144 (2022); DOI:10.1103/PhysRevB.105.165144

82) F. D. Vila, K. Kowalski, B. Peng, J. J. Kas, J. J. Rehr, “Real-time equation-of-motion CCSD cumulant Green's function”, Journal of Chemical Theory and Computation 18 (3), pp. 1799-1807 (2022); DOI:10.1021/acs.jctc.1c01179

81) C. Mejuto-Zaera, D. Tzeli, D. Williams-Young, N. M. Tubman, M. Matoušek, J. Brabec, L. Veis, S. S. Xantheas, W. A. de Jong, ”The Effect of Geometry, Spin and Orbital Optimization in Achieving Accurate, Fully-Correlated Results for Iron-Sulfur Cubanes”, Journal of Chemical Theory and Computation 18 (2), pp. 687-702 (2022); DOI:10.1021/acs.jctc.1c00830

80) A. Shee, C.-N. Yeh and D. Zgid, ”Exploring Coupled Cluster Green’s function as a method for treating system and environment in Green’s function embedding methods”, Journal of Chemical Theory and Computation 18 (2), pp. 664-676 (2022); DOI:10.1021/acs.jctc.1c00712

79) A. Leszczyk, M. Máté, Ö. Legeza, K. Boguslawski, ”Assessing the accuracy of tailored coupled cluster methods corrected by electronic wave functions of polynomial cost”, Journal of Chemical Theory and Computation 18 (1), pp. 96-117 (2022); DOI:10.1021/acs.jctc.1c00284

78) F. Gebhard, Ö. Legeza, ”Tracing the Mott-Hubbard transition in one-dimensional Hubbard models without Umklapp scattering”, Phys. Rev. B 104, 245118 (2021); DOI:10.1103/PhysRevB.104.245118

77) Q. Yuan, M. Rohdenburg, W. Cao, E. Aprà, J. Landmann, M. Finze, J. Warneke, X.-B. Wang, ”Isolated [B2(CN)6]2-: Small Yet Exceptionally Stable Non-Metal Dianion”, The Journal of Physical Chemistry Letters 12 (50), pp. 12005-12011 (2021); DOI:10.1021/acs.jpclett.1c03533

76) D. Mejia-Rodriguez, A. Kunitsa, E. Aprà and N. Govind, ”Scalable Molecular GW Calculations: Valence and Core Spectra”, Journal of Chemical Theory and Computation 17 (12), pp. 7504-7517 (2021); DOI:10.1021/acs.jctc.1c00738>

75) J. P. Heindel and S. S. Xantheas, ”Molecular Dynamics Driven by the Many-Body Expansion (MBE-MD)”, Journal of Chemical Theory and Computation 17 (12), pp. 7341-7352 (2021); DOI:10.1021/acs.jctc.1c00780

74) P. Beran, M. Matoušek, M. Hapka, K. Pernal, L. Veis, ”Density Matrix Renormalization Group with Dynamical Correlation via Adiabatic Connection”, Journal of Chemical Theory and Computation 17 (12), pp. 7575-7585 (2021); DOI:10.1021/acs.jctc.1c00896

73) B. Peng, N. P. Bauman, S. Gulania, K. Kowalski, ”Chapter Two - Coupled cluster Green's function: Past, Present, and Future”, Annual Reports in Computational Chemistry 17, pp. 23-53 (2021); DOI:10.1016/bs.arcc.2021.08.002

72) S. Szalay, Z. Zimboras, M. Mate, G. Barcza, C. Schilling, Ö. Legeza, ”Fermionic systems for quantum information people”, Journal of Physics A: Mathematical and Theoretical 54 (39), 393001 (2021); DOI:10.1088/1751-8121/ac0646


PHASE 1: October 1st 2017 - September 30th 2021

71) T. H. Dunning, L. T. Xu, J. V. K Thompson, "New Insights into the Remarkable Difference between CH5 and SiH5", Journal of Physical Chemistry A, 1 pp. 7414-7424 (2021); DOI:10.1021/acs.jpca.1c05357

70) F. D. Villa, J. J. Kas, J. J. Rehr, K. Kowalski, B. Peng, "Equation-of-Motion Coupled-Cluster Cumulant Green’s Function for Excited States and X-ray Spectra",Frontiers in Chemistry, 9, 734945 (2021); DOI:10.3389/fchem.2021.734945

69) P. Golub, A. Antalik, L. Veis, J. Brabec, ”Machine Learning-Assisted Selection of Active Spaces for Strongly Correlated Transition Metal Systems”, Journal of Chemical Theory and Computation 17 (10), pp. 6053-6072 (2021); DOI:10.1021/acs.jctc.1c00235

68) D. Tzeli, S. Raugei, S. S. Xantheas, ”Quantitative Account of the Bonding Properties of a Rubredoxin Model Complex [Fe(SCH3)4]q, q = −2, −1, +2, +3”, Journal of Chemical Theory and Computation 17 (10), pp. 6080-6091 (2021); DOI:10.1021/acs.jctc.1c00485

67) S. Hirata, ”Finite-temperature many-body perturbation theory for electrons: Algebraic recursive definitions, second-quantized derivation, linked-diagram theorem, general-order algorithms, grand canonical and canonical ensembles”, The Journal of Chemical Physics 155 (9), 094106 (2021); DOI:10.1063/5.0061384

66) C.-N. Yeh, A. Shee and D. Zgid, ”Testing the Green's function coupled cluster singles and doubles impurity solver on real materials within the framework of self-energy embedding theory”, Physical Review B 103 (15), 155158 (2021); DOI:10.1103/PhysRevB.103.155158

65) A. E. Doran, D. L. Qiu, and S. Hirata, ”Monte Carlo MP2-F12 for Noncovalent Interactions: The C60 Dimer”, The Journal of Physical Chemistry A 125 (33), pp. 7344-7351 (2021); DOI:10.1021/acs.jpca.1c05021

64) C. Krumnow, L. Veis, J. Eisert, Ö. Legeza, ”Effective dimension reduction with mode transformations: Simulating two-dimensional fermionic condensed matter systems”, Physical Review B 104, 075137 (2021); DOI:10.1103/PhysRevB.104.075137

63) J. P. Heindel, K. M. Herman, E. Aprà, and S. S. Xantheas, ”Guest-Host Interactions in Clathrate Hydrates: Benchmark MP2 and CCSD(T)/CBS Binding Energies of CH4, CO2 and H2S in (H2O)20 Cages”, The Journal of Physical Chemistry Letters 12 (31), pp. 7574-7582 (2021); DOI:10.1021/acs.jpclett.1c01884

62) T. H. Dunning Jr. and L. T. Xu, ”Nature of the Bonding in the Bifluoride Anion, FHF”, The Journal of Physical Chemistry Letters 12 (30), pp. 7293-7298 (2021); DOI:10.1021/acs.jpclett.1c02123

61) B. C. Cooper, L. N. Koulias, D. R. Nascimento, X. Li, and A. E. DePrince, ”Short Iterative Lanczos Integration in Time-Dependent Equation-of-Motion Coupled-Cluster Theory”, The Journal of Physical Chemistry A 125 (24), pp. 5438-5447 (2021); DOI:10.1021/acs.jpca.1c01102

60) T. Zhang, X. Liu, E. F. Valeev, and X. Li, ”Toward the Minimal Floating Operation Count Cholesky Decomposition of Electron Repulsion Integrals”, The Journal of Physical Chemistry A 125 (19), pp. 4258-4265 (2021); DOI:10.1021/acs.jpca.1c02317

59) A. Grofe, J. Gao, and X. Li, ”Exact-two-component block-localized wave function: A simple scheme for the automatic computation of relativistic ΔSCF”, The Journal of Chemical Physics 155, 014103 (2021); DOI:10.1063/5.0054227

58) X. Qin and S. Hirata, ”Finite-temperature vibrational full configuration interaction”, Molecular Physics 119, e1949503 (2021); DOI:10.1080/00268976.2021.1949503

57) A. Pershin, G. Barcza, Ö. Legeza, A. Gali, "Highly tunable magneto-optical response form MgV color centers in diamond", Nature Physics Journal Quantum information 7, 99 (2021); DOI:10.1038/s41534-021-00439-6

56) T. H. Dunning Jr., L. T. Xu, D. L. Cooper, and P. B. Karadakov, “Spin-Coupled Generalized Valence Bond Theory: New Perspectives on the Electronic Structure of Molecules and Chemical Bonds”, The Journal of Physical Chemistry A 125 (10), pp. 2021-2050 (2021); DOI:10.1021/acs.jpca.0c10472

55) A. E. Doran and S. Hirata, “Stochastic evaluation of fourth-order many-body perturbation energies”, The Journal of Chemical Physics 154 (13), 134114 (2021); DOI:10.1063/5.0047798

54) B. Peng, A. Panyala, K. Kowalski, S. Krishnamoorthy, “GFCCLib: Scalable and Efficient Coupled-Cluster Green's Function Library for Accurately Tackling Many Body Electronic Structure Problems”, Computer Physics Communications 265, 108000 (2021); DOI:10.1016/j.cpc.2021.108000

53) K. M. Herman, J. P. Heindel and S. S. Xantheas, “The Many-Body Expansion for Aqueous Systems Revisited: III. Hofmeister ion - water interactions”, Physical Chemistry Chemical Physics 23 (19), pp. 11196-11210 (2021); DOI:10.1039/D1CP00409C

52) J. P. Heindel and S. S. Xantheas, “The Many-Body Expansion for Aqueous Systems Revisited: II. Alkali Metal and Halide Ion–Water Interactions”, Journal of Chemical Theory and Computation 17 (4), pp. 2200-2216 (2021); DOI:10.1021/acs.jctc.0c01309

51) A. Nowak, Ö. Legeza, K. Boguslawski, “Orbital entanglement and correlation from pCCD-tailored Coupled Cluster wave functions”, The Journal of Chemical Physics 154 (8), 084111 (2021); DOI:10.1063/5.0038205

50) M. Máté, Ö. Legeza, R. Schilling, M. Yousif, C. Schilling, “How creating one additional well can generate Bose-Einstein condensation”, Communication Physics 4, 29 (2021); DOI:10.1038/s42005-021-00533-3

49) S. Hirata, “Low-temperature breakdown of many-body perturbation theory for thermodynamics” Physical Review A 103 (1), pp. 012223 (2021); DOI:10.1103/PhysRevA.103.012223

48) G. Barcza, V. Ivády, T. Szilvási, M. Vörös, L. Veis, Á. Gali, and Ö. Legeza, “DMRG on Top of Plane-Wave Kohn–Sham Orbitals: A Case Study of Defected Boron Nitride”, Journal of Chemical Theory and Computation 17 (2), pp. 1143-1154 (2021); DOI:10.1021/acs.jctc.0c00809

47) J. Brabec, J. Brandejs, K. Kowalski, S. Xantheas, Ö. Legeza, L. Veis, “Massively parallel quantum chemical density matrix renormalization group method”, Journal of Computational Chemistry 42 (8), pp. 534-544 (2021); DOI:10.1002/jcc.26476

46) A. T. Kruppa, J. Kovács, P. Salamon and Ö. Legeza, “Entanglement and correlation in two-nucleon systems”, Journal of Physics G: Nuclear and Particle Physics 48 (2), pp. 025107 (2021); DOI:10.1088/1361-6471/abc2dd

45) L. T. Xu and T. H. Dunning, Jr., “Orbital Hybridization in Modern Valence Bond Wave Functions: Methane, Ethylene, and Acetylene,” Journal of Physical Chemistry A 124, pp. 204-214 (2020); DOI:10.1021/acs.jpca.9b11054. Correction in Journal of Physical Chemistry A 125 (40), pp. 9026 (2021); DOI:10.1021/acs.jpca.1c08386

44) J. M. Kasper, T. F. Stetina, A. J. Jenkins, and X. Li , ”Ab initio methods for L-edge x-ray absorption spectroscopy”, Chemical Physics Reviews 1, pp. 011304 (2020); DOI:10.1063/5.0029725

43) L. T. Xu and T. H. Dunning, Jr., “A cautionary tale: Problems in the valence-CASSCF description of the ground state (X1Σ+) of BF”, The Journal of Chemical Physics 153 (11), 114113 (2020); DOI:10.1063/5.0024134

42) X. Qin and S. Hirata, “Anharmonic Phonon Dispersion in Polyethylene”, Journal of Physical Chemistry B 124 (46), pp. 10477-10485 (2020); DOI:10.1021/acs.jpcb.0c08493

41) J. Kim, A. Panyala, B. Peng, K. Kowalski, P. Sadayappan and S. Krishnamoorthy, “Scalable Heterogeneous Execution of a Coupled-Cluster Model with Perturbative Triples”, in SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (SC), Atlanta, GA, US, pp. 1112-1126 (2020); DOI:10.1109/SC41405.2020.00083

40) J. P. Heindel and S. S. Xantheas, “The Many-Body Expansion for Aqueous Systems Revisited: I. Water−Water Interactions”, Journal of Chemical Theory and Computation 16 (11), pp. 6843-6855 (2020); DOI:10.1021/acs.jctc.9b00749

39) A. E. Doran and S. Hirata, “Convergence acceleration of Monte Carlo many-body perturbation methods by direct sampling”, The Journal of Chemical Physics 153 (10), 104112 (2020); DOI:110.1063/5.0020583

38) A. E. Doran and S. Hirata, “Convergence acceleration of Monte Carlo many-body perturbation methods by using many control variates”, The Journal of Chemical Physics 153 (9), 094108 (2020); DOI:10.1063/5.0020584

37) C. E. Hoyer and X. Li, “Relativistic two-component projection-based quantum embedding for open-shell systems”, The Journal of Chemical Physics 153, 094113 (2020); DOI:10.1063/5.0012433

36) D. Tzeli, I. Karapetsas, “Quadruple Bonding in the Ground and Low-Lying Excited States of the Diatomic Molecules TcN, RuC, RhB, and PdBe”, The Journal of Physical Chemistry A 124, pp. 6667-6681 (2020); DOI:10.1021/acs.jpca.0c03208

35) C. Paşcu Moca, W. Izumida, B. Dóra, Ö. Legeza, J. K. Asbóth, and G. Zaránd, “Topologically Protected Correlated End Spin Formation in Carbon Nanotubes”, Physical Review Letters 125, pp. 056401 (2020); DOI:10.1103/PhysRevLett.125.056401

34) F. D. Vila, J. J. Rehr, J. J. Kas, K. Kowalski, B. Peng, “Real-time coupled-cluster approach for the cumulant Green's function”, Journal of Chemical Theory and Computation 16 (11), pp. 6983-6992 (2020); DOI:10.1021/acs.jctc.0c00639

33) A. Antalík, D. Nachtigallová, Ra. Lo, M. Matoušek, J. Lang, Ö. Legeza, J. Pittner, P. Hobza, L. Veis, “Ground State of the Fe(II)-porphyrin Model System Corresponds to the Quintet State: A DFT and DMRG-based Tailored CC Study”, Physical Chemistry Chemical Physics 22, pp. 17033-17037 (2020); DOI:10.1039/D0CP03086D

32) S. Hirata and P. K. Jha, “Finite-temperature many-body perturbation theory in the grand canonical ensemble”, The Journal of Chemical Physics 153, 014103 (2020); DOI:10.1063/5.0009679

31) J. S. Jestilä, J. K. Denton, E. H. Perez, T. Khuu, E. Aprà, S. S. Xantheas, M. A. Johnson, E. Uggerud, “Characterization of the Alkali Metal Oxalates (MC2O4) and their formation by CO2 reduction via the Alkali Metal Carbonites (MCO2)”, Physical Chemistry Chemical Physics 22, pp. 7460-7473, (2020); DOI:10.1039/D0CP00547A

30) L. T. Xu, D. L. Cooper, and T. H. Dunning, Jr., “Resolving a Puzzling Anomaly in the Spin-Coupled Generalized Valence Bond Description of Benzene,” Journal of Computational Chemistry 41, pp. 1421-1426 (2020); ;DOI:10.1002/jcc.26185

29) L. T. Xu and T. H. Dunning, Jr., "The Nature of the Chemical Bond and the Role of Non-Dynamical and Dynamical Correlation in Be2,” The Journal of Chemical Physics 152, 214111 (2020); DOI:10.1063/5.0010068

28) J. Brandejs, J. Visnak, L. Veis, M. Mate, Ö. Legeza and J. Pittner, “Toward DMRG-tailored coupled cluster method in the 4c-relativistic domain”, The Journal of Chemical Physics 152, 174107 (2020); DOI:10.1063/1.5144974

27) X. Li, N. Govind, C. Isborn, A. E. DePrince III, K. Lopata, “Real-Time Time-Dependent Electronic Structure Theory”, Chem. Rev. 120 (18), pp. 9951-9993 (2020); DOI:10.1021/acs.chemrev.0c00223

26) J. A. Scher, N. Govind, A. Chakraborty. “Evidence of Skewness and Sub-Gaussian Character in Temperature-Dependent Distributions of One Million Electronic Excitation Energies in PbS Quantum Dots,” J. Phys. Chem. Lett. 11 (3), pp. 986-992 (2020); DOI:10.1021/acs.jpclett.9b03103

25) M. Tzavala, J. J. Kas, L. Reining, J. J. Rehr, “Non-linear response in the cumulant expansion for core hole photoemission”, Physical Review Research 2, 033147 (2020); DOI:10.1103/PhysRevResearch.2.033147

24) E. Aprà, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski et al, “NWChem: Past, present, and future”, The Journal of Chemical Physics 152, 184102 (2020); DOI:10.1063/5.0004997

23) J. J. Rehr, F. D. Vila, J. J. Kas, N. Y. Hirshberg, K. Kowalski, B. Peng, “Equation of motion coupled-cluster cumulant approach for intrinsic losses in x-ray spectra”, The Journal of Chemical Physics 152, 174113 (2020); DOI:10.1063/5.0004865

22) B. Peng, K. Kowalski, A. Panyala, S. Krishnamoorthy, "Green’s function coupled cluster simulation of the near-valence ionizations of DNA-fragments", The Journal of Chemical Physics 152, 011101 (2020); DOI:10.1063/1.5138658

21) A. Shee and D. Zgid, "Coupled Cluster as an Impurity Solver for Green’s Function Embedding Methods", Journal of Chemical Theory and Computation 15 (11), pp. 6010-6024 (2019); DOI:10.1021/acs.jctc.9b00603

20) P. K. Jha and S. Hirata, "Finite-temperature many-body perturbation theory in the canonical ensemble" Physical Review E 101, 022106 (2019), DOI:10.1103/PhysRevE.101.022106

19) L. N. Koulias, D. B. Williams-Young, D. R. Nascimento, A. E. DePrince III, X. Li, "Relativistic Real-Time Time-Dependent Equation-of-Motion Coupled-Cluster", Journal of Chemical Theory and Computation 15, pp. 6617-6624 (2019); DOI:10.1021/acs.jctc.9b00729

18) A. E. Doran, S. Hirata, "Monte Carlo Second- and Third-Order Many-Body Green’s Function Methods with Frequency-Dependent, Nondiagonal Self-Energy", Journal of Chemical Theory and Computation 15, pp. 6097-6110 (2019); DOI:10.1021/acs.jctc.9b00693

17) S. Hirata and P. K. Jha, "Chapter Two - Converging finite-temperature many-body perturbation theory in the grand canonical ensemble that conserves the average number of electrons”, Annual Reports in Computational Chemistry 15, pp. 17-37 (2019); DOI:10.1016/bs.arcc.2019.08.003

16) P. K. Jha and S. Hirata , “Chapter One - Numerical evidence invalidating finite-temperature many-body perturbation theory” Annual Reports in Computational Chemistry 15, pp. 3-15 (2019); DOI:10.1016/bs.arcc.2019.08.002

15) B. Peng, R. van Beeumen, D. B. Williams-Young, K. Kowalski, C. Yang, "Approximate Green's Function Coupled Cluster Method Employing Effective Dimension Reduction" Journal of Chemical Theory and Computation 15 (5), pp. 3185-3196 (2019); DOI:10.1021/acs.jctc.9b00172

14) C. E. Hoyer , D. B. Williams-Young, C. Huang, and X. Li, "Embedding non-collinear two-component electronic structure in a collinear quantum environment" The Journal of Chemical Physics 150, 174114 (2019); DOI:10.1063/1.5092628

13) L. T. Xu, J. V. K. Thompson, T. H. Dunning Jr., "Spin-Coupled Generalized Valence Bond Description of Group 14 Species: The Carbon, Silicon and Germanium Hydrides, XHn(n = 1–4)", Journal of Physical Chemistry A, 123 (12), pp. 2401-2419 (2019); DOI:10.1021/acs.jpca.9b00376

12) M. Mayer, V. van Lessen, M. Rohdenburg, G.-L. Hou, Z. Yang, R. M. Exner, E. Aprà, V. A. Azov, S. Grabowsky, S. S. Xantheas, K. R. Asmis, X.-B. Wang, C. Jenne, J. Warneke, “Rational design of an argon-binding superelectrophilic anion”, Proceedings of the National Academy (USA) 116 (17), pp. 8167-8172 (2019); DOI:10.1073/pnas.1820812116

11) E. Aprà, J. Warneke, S. S. Xantheas, X.-B. Wang, “A benchmark photoelectron spectroscopic and theoretical study of the electronic stability of [B12H12]2-”, The Journal of Chemical Physics 150 (16), 164306 (2019); DOI:10.1063/1.5089510

10) J. Warneke, S. Z. Konieczka, G.-L. Hou, E. Aprà, C. Kerpen, F. Keppner, T. C. Schäfer, M. Deckert, Z. Yang, E. J. Bylaska, G. E. Johnson, J. Laskin, S. S. Xantheas, X.-B. Wang, M. Finze, “Properties of perhalogenated closo-B10 and closo-B11 multiply charged anions and a critical comparison with closo-B12 in the gas and the condensed phase”, Physical Chemistry Chemical Physics 21 (11), pp. 5903-5915 (2019); DOI:10.1039/C8CP05313H. Inside back cover

9) G. Liu, E. Miliordos, G. Liu, S. N. Ciborowski, M. Tschurl, U. Boesl, U. Heiz, X. Zhang, S. S. Xantheas, and K. H. Bowen, “Water Activation by Single Metal-Atom Anions”, Communication to the Editor, The Journal of Chemical Physics 149 (22), 221101 (2018); DOI:10.1063/1.5050913

8) B. Peng and K. Kowalski, "Green's function coupled cluster formulations utilizing extended inner excitations", The Journal of Chemical Physics 149 (21), 214102 (2018); DOI:10.1063/1.5046529

7) K. Kowalski, J. Brabec, B. Peng, "Regularized and Renormalized Many-body Techniques for Describing Correlated Molecular Systems: A Coupled-Cluster Perspective", Annual Reports in Computational Chemistry, volume 14, 1st Edition, Elsevier, pp. 3-45 (2018); DOI:10.1016/bs.arcc.2018.06.001

6) J. Zhang, “Origins of the enantioselectivity of a palladium catalyst with BINOL–phosphoric acid ligands”, Organic Biomolecular Chemistry 16 (43), pp. 8064-8071 (2018); DOI:10.1039/C8OB02271B

5) C. M. Johnson, A. E. Doran, S. L. Ten-no, and S. Hirata, “Monte Carlo explicitly correlated many-body Green’s function theory”, The Journal of Chemical Physics 149 (17), 174112 (2018); DOI:10.1063/1.5054610

4) K. Blaziak, D. Tzeli, S. S. Xantheas and E. Uggerud, “The activation of carbon dioxide by first row transition metals (Sc – Zn)”, Physical Chemistry Chemical Physics 20 (39), pp. 25495-25505 (2018); DOI:10.1039/C8CP04231D

3) B. Peng and K. Kowalski, “Green’s Function Coupled-Cluster Approach: Simulating Photoelectron Spectra for Realistic Molecular Systems”, J. Chem. Theory Comput. 14 (8), pp. 4335-4352 (2018); DOI:10.1021/acs.jctc.8b00313

2) K. Kowalski, “Properties of coupled-cluster equations originating in excitation sub-algebras”, The Journal of Chemical Physics 148 (9), 094104 (2018); DOI:10.1063/1.5010693

1) J. Warneke, G.-L. Hou, E. Aprà, C. Jenne, Z. Yang, Z. Qin, K. Kowalski, X.-B. Wang and S. S. Xantheas, “Electronic Structure and Stability of (B12X12)2- (X = F − At): A Combined Photoelectron Spectroscopic and Theoretical Study”, Journal of the American Chemical Society 139 (41), pp. 14749-14756 (2017); DOI:10.1021/jacs.7b08598