Publications

20) P. K. Jha and S. Hirata, "“Finite-temperature many-body perturbation theory in the canonical ensemble" Physical Review E (submitted, 2019), arXiv:1910.07628

19) L. N. Koulias, D. B. Williams-Young, D. R. Nascimento, A. E. DePrince III, X. Li, "Relativistic Real-Time Time-Dependent Equation-of-Motion Coupled-Cluster", Journal of Chemical Theory and Computation ASAP article (2019); https://pubs.acs.org/doi/abs/10.1021/acs.jctc.9b00729

18) A. E. Doran, S. Hirata, "Monte Carlo Second- and Third-Order Many-Body Green’s Function Methods with Frequency-Dependent, Nondiagonal Self-Energy", Journal of Chemical Theory and Computation 15, pp 6097−6110 (2019); https://pubs.acs.org/doi/10.1021/acs.jctc.9b00693

17) S. Hirata and P. K. Jha, "Chapter Two - Converging finite-temperature many-body perturbation theory in the grand canonical ensemble that conserves the average number of electrons”, Annual Reports in Computational Chemistry 15, pp 17–37 (2019)

16) P. K. Jha and S. Hirata, “Chapter One - Numerical evidence invalidating finite-temperature many-body perturbation theory” Annual Reports in Computational Chemistry 15, pp 315 (2019); https://www.sciencedirect.com/science/article/pii/S1574140019300027

15) B. Peng, R. van Beeumen, D. B. Williams-Young, K. Kowalski, C. Yang,  "Approximate Green's Function Coupled Cluster Method Employing Effective Dimension Reduction" Journal of Chemical Theory and Computation 15(5), pp 3185-3196 (2019); https://pubs.acs.org/doi/10.1021/acs.jctc.9b00172

14) C. E. Hoyer , D. B. Williams-Young, C. Huang, and X. Li, "Embedding non-collinear two-component electronic structure in a collinear quantum environment" Journal of Chemical Physics 150, 174114 (2019); https://doi.org/10.1063/1.5092628

13) L. T. Xu, J. V. K. Thompson, T. H. Dunning Jr., "Spin-Coupled Generalized Valence Bond Description of Group 14 Species: The Carbon, Silicon and Germanium Hydrides, XHn (n = 1–4)", Journal of Physical Chemistry A, 123 (12), pp 2401–2419 (2019); https://doi.org/10.1021/acs.jpca.9b00376

12) M. Mayer, V. van Lessen, M. Rohdenburg, G.-L. Hou, Z. Yang, R. M. Exner, E. Aprà, V. A. Azov, S. Grabowsky, S. S. Xantheas, K. R. Asmis, X.-B. Wang, C. Jenne, J. Warneke, “Rational design of an argon-binding superelectrophilic anion”, Proceedings of the National Academy (USA) 116 (17), pp 8167-8172 (2019); https://doi.org/10.1073/pnas.1820812116

11) E. Aprà, J. Warneke, S. S. Xantheas, X.-B. Wang, “A benchmark photoelectron spectroscopicy and theoretical study of the electronic stability of [B12H12]2-”, The Journal of Chemical Physics 150 (16), 164306 (2019); https://doi.org/10.1063/1.5089510

10) J. Warneke, S. Z. Konieczka, G.-L. Hou, E. Aprà, C. Kerpen, F. Keppner, T. C. Schäfer, M. Deckert, Z. Yang, E. J. Bylaska, G. E. Johnson, J. Laskin, S. S. Xantheas, X.-B. Wang, M. Finze, “Properties of perhalogenated closo-B10 and closo-B11 multiply charged anions and a critical comparison with closo-B12 in the gas and the condensed phase”, Physical Chemistry Chemical Physics 21 (11), pp 5903-5915 (2019); http://dx.doi.org/10.1039/C8CP05313H. Inside back cover

9) G. Liu, E. Miliordos, G. Liu, S. N. Ciborowski M. Tschurl, U. Boesl, U. Heiz, X. Zhang, S. S. Xantheas, and K. H. Bowen, “Water Activation by Single Metal-Atom Anions”, Communication to the Editor, The Journal of Chemical Physics 149 (22), 221101 (2018); https://doi.org/10.1063/1.5050913

8) B. Peng and K. Kowalski, "Green's function coupled cluster formulations utilizing extended inner excitations", The Journal of Chemical Physics 149 (21), 214102 (2018); https://doi.org/10.1063/1.5046529

7) K. Kowalski, J. Brabec, .B Peng, "Regularized and Renormalized Many-body Techniques for Describing Correlated Molecular Systems: A Coupled-Cluster Perspective", Annual Reports in Computational Chemistry, volume 14, 1st Edition, Elsevier, pp 345 (2018); https://www.elsevier.com/books/annual-reports-in-computational-chemistry/dixon/978-0-444-64116-8

6) J. Zhang, “Origins of the enantioselectivity of a palladium catalyst with BINOL–phosphoric acid ligands”, Organic & Biomolecular Chemistry 16 (43), pp 80648071 (2018); https://doi.org/10.1039/C8OB02271B

5) C. M. Johnson, A. E. Doran, S. L. Ten-no, and S. Hirata, “Monte Carlo explicitly correlated many-body Green’s function theory”, The Journal of Chemical Physics 149 (17), 174112 (2018); https://aip.scitation.org/doi/10.1063/1.5054610

4) K. Blaziak, D. Tzeli, S. S. Xantheas and E. Uggerud, “The activation of carbon dioxide by first row transition metals (Sc – Zn)”, Physical Chemistry Chemical Physics 20 (39), pp 2549525505 (2018); https://doi.org/10.1039/C8CP04231D

3) B. Peng and K. Kowalski, “Green’s Function Coupled-Cluster Approach: Simulating Photoelectron Spectra for Realistic Molecular Systems”, J. Chem. Theory Comput. 14 (8), pp 4335–4352 (2018); https://doi.org/10.1021/acs.jctc.8b00313

2) K. Kowalski, “Properties of coupled-cluster equations originating in excitation sub-algebras”, The Journal of Chemical Physics 148 (9), 094104 (2018); https://doi.org/10.1063/1.5010693

1) J. Warneke, G.-L. Hou, E. Aprà, C. Jenne, Z. Yang, Z. Qin, K. Kowalski, X.-B. Wang and S. S. Xantheas, “Electronic Structure and Stability of (B12X12)2- (X = F − At): A Combined Photoelectron Spectroscopic and Theoretical Study”, Journal of the American Chemical Society 139 (41), pp 14749–14756  (2017); https://doi.org/10.1021/jacs.7b08598