Publications

75) F. Gebhard, Ö. Legeza, ”Tracing the Mott-Hubbard transition in one-dimensional Hubbard models without Umklapp scattering”, arXiv preprint (2021); arXiv:2109.01423

73) A. Shee, C.-N. Yeh and D. Zgid, ”Exploring Coupled Cluster Green’s function as a method for treating system and environment in Green’s function embedding methods”, arXiv preprint (2021); arXiv:2107.07891

73) D. Mejia-Rodriguez, A. Kunitsa, E. Aprà and N. Govind, ”Scalable Molecular GW Calculations: Valence and Core Spectra”, arXiv preprint (2021); arXiv:2107.10423

72) B. Peng, N. P. Bauman, S. Gulania, K. Kowalski, ”Coupled cluster Green's function-Past, Present, and Future”, arXiv preprint (2021); arXiv:2107.04968

71) C. Mejuto-Zaera, D. Tzeli, D. Williams-Young, N. M. Tubman, M. Matoušek, J. Brabec, L. Veis, S. S. Xantheas, W. A. de Jong, ”The Effect of Geometry, Spin and Orbital Optimization in Achieving Accurate, Fully-Correlated Results for Iron-Sulfur Cubanes”, arXiv preprint (2021); arXiv:2105.01754

70) P. Golub, A. Antalik, L. Veis, J. Brabec, ”Automatic selection of active spaces for strongly correlated systems using machine learning algorithms”, arXiv preprint (2020); arXiv:2011:14715

69) S. Szalay, Z. Zimboras, M. Mate, G. Barcza, C. Schilling, O. Legeza, ”Fermionic systems for quantum information people”, arXiv preprint (2021); arXiv:2006.03087

68) D. Tzeli, S. Raugei, S. S. Xantheas, ”Quantitative Account of the Bonding Properties of a Rubredoxin Model Complex [Fe(SCH3)4]q, q = −2, −1, +2, +3”, Journal of Chemical Theory and Computation 17 (XX), pp. XXX (2021); DOI:10.1021/acs.jctc.1c00485

67) S. Hirata, ”Finite-temperature many-body perturbation theory for electrons: Algebraic recursive definitions, second-quantized derivation, linked-diagram theorem, general-order algorithms, grand canonical and canonical ensembles”, The Journal of Chemical Physics 155 (9), pp. 094106 (2021); DOI:10.1063/5.0061384

66) C.-N. Yeh, A. Shee and D. Zgid, ”Testing the Green's function coupled cluster singles and doubles impurity solver on real materials within the framework of self-energy embedding theory”, Physical Review B 103 (15), pp. 155158 (2021); DOI:10.1103/PhysRevB.103.155158

65) A. E. Doran, D. L. Qiu, and S. Hirata, ”Monte Carlo MP2-F12 for Noncovalent Interactions: The C60 Dimer”, The Journal of Physical Chemistry A 125 (33), pp. 7344-7351 (2021); DOI:10.1021/acs.jpca.1c05021

64) C. Krumnow, L. Veis, J. Eisert, O. Legeza, ”Effective dimension reduction with mode transformations: Simulating two-dimensional fermionic condensed matter systems”, Physical Review B 104, pp. 075137 (2021); DOI:10.1103/PhysRevB.104.075137

63) J. P. Heindel, K. M. Herman, E. Aprà, and S. S. Xantheas, ”Guest-Host Interactions in Clathrate Hydrates: Benchmark MP2 and CCSD(T)/CBS Binding Energies of CH4, CO2 and H2S in (H2O)20 Cages”, The Journal of Physical Chemistry Letters 12 (31), pp. 7574–7582 (2021); DOI:10.1021/acs.jpclett.1c01884

62) T. H. Dunning Jr. and L. T. Xu, ”Nature of the Bonding in the Bifluoride Anion, FHF”, The Journal of Physical Chemistry Letters 12 (XX), pp. 7293–7298 (2021); DOI:10.1021/acs.jpclett.1c02123

61) B. C. Cooper, L. N. Koulias, D. R. Nascimento, X. Li, and A. E. DePrince, ”Short Iterative Lanczos Integration in Time-Dependent Equation-of-Motion Coupled-Cluster Theory”, The Journal of Physical Chemistry A 125 (24), pp. 5438-5447 (2021); DOI:10.1021/acs.jpca.1c01102

60) T. Zhang, X. Liu, E. F. Valeev, and X. Li, ”Toward the Minimal Floating Operation Count Cholesky Decomposition of Electron Repulsion Integrals”, The Journal of Physical Chemistry A 125 (19), pp. 4258-4265 (2021); DOI:10.1021/acs.jpca.1c02317

59) A. Grofe, J. Gao, and X. Li, ”Exact-two-component block-localized wave function: A simple scheme for the automatic computation of relativistic ΔSCF”, The Journal of Chemical Physics 155, pp. 014103 (2021); DOI:10.1063/5.0054227

58) X. Qin and S. Hirata, ”Finite-temperature vibrational full configuration interaction”, Molecular Physics 119, pp. e1949503 (2021); DOI:10.1080/00268976.2021.1949503

57) A. Pershin, G. Barcza, Ö. Legeza, A. Gali, "Highly tunable magneto-optical response form MgV color centers in diamond", Nature Physics Journal Quantum information 7, pp. 99 (2021); DOI:10.1038/s41534-021-00439-6

56) T. H. Dunning Jr., L. T. Xu, D. L. Cooper, and P. B. Karadakov, “Spin-Coupled Generalized Valence Bond Theory: New Perspectives on the Electronic Structure of Molecules and Chemical Bonds”, The Journal of Physical Chemistry A 125 (10), pp. 2021–2050 (2021); DOI:10.1021/acs.jpca.0c10472

55) A. E. Doran and S. Hirata, “Stochastic evaluation of fourth-order many-body perturbation energies”, The Journal of Chemical Physics 154 (13), pp. 134114 (2021); DOI:10.1063/5.0047798

54) B. Peng, A. Panyala, K. Kowalski, S. Krishnamoorthy, “GFCCLib: Scalable and Efficient Coupled-Cluster Green's Function Library for Accurately Tackling Many Body Electronic Structure Problems”, Computer Physics Communications 265, pp. 108000 (2021); DOI:10.1016/j.cpc.2021.108000

53) K. M. Herman, J. P. Heindel and S. S. Xantheas, “The Many-Body Expansion for Aqueous Systems Revisited: III. Hofmeister ion - water interactions”, Physical Chemistry Chemical Physics 23 (19), pp. 11196-11210 (2021); DOI: DOI:10.1039/D1CP00409C

52) J. P. Heindel and S. S. Xantheas, “The Many-Body Expansion for Aqueous Systems Revisited: II. Alkali Metal and Halide Ion–Water Interactions”, Journal of Chemical Theory and Computation 17 (4), pp. 2200–2216 (2021); DOI:10.1021/acs.jctc.0c01309

51) A. Nowak, O. Legeza, K. Boguslawski, “Orbital entanglement and correlation from pCCD-tailored Coupled Cluster wave functions”, Journal of Chemical Physics 154 (8), pp. 084111 (2021); DOI:10.1063/5.0038205

50) M. Máté, Ö. Legeza, R. Schilling, M. Yousif, C. Schilling, “How creating one additional well can generate Bose-Einstein condensation”, Communication Physics 4, pp. 29 (2021); DOI:10.1038/s42005-021-00533-3

49) S. Hirata, “Low-temperature breakdown of many-body perturbation theory for thermodynamics” Physical Review A 103 (1), pp. 012223 (2021); DOI:10.1103/PhysRevA.103.012223

48) G. Barcza, V. Ivády, T. Szilvási, M. Vörös, L. Veis, Á. Gali, and Ö. Legeza, “DMRG on Top of Plane-Wave Kohn–Sham Orbitals: A Case Study of Defected Boron Nitride”, Journal of Chemical Theory and Computation 17 (2), pp. 1143–1154 (2021); DOI:10.1021/acs.jctc.0c00809

47) J. Brabec, J. Brandejs, K. Kowalski, S. Xantheas, Ö. Legeza, L. Veis, “Massively parallel quantum chemical density matrix renormalization group method”, Journal of Computational Chemistry 42 (8), pp. 534-544 (2021); DOI:10.1002/jcc.26476

46) A. T. Kruppa, J. Kovács, P. Salamon and Ö. Legeza, “Entanglement and correlation in two-nucleon systems”, Journal of Physics G: Nuclear and Particle Physics 48 (2), pp. 025107 (2021); DOI:10.1088/1361-6471/abc2dd

45) J. M. Kasper, T. F. Stetina, A. J. Jenkins, and X. Li , ”Ab initio methods for L-edge x-ray absorption spectroscopy”, Chemical Physics Reviews 1, pp. 011304 (2020); DOI:10.1063/5.0029725

44) L. T. Xu and T. H. Dunning, Jr., “A cautionary tale: Problems in the valence-CASSCF description of the ground state (X1Σ+) of BF”, Journal of Chemical Physics 153 (11), pp. 114113 (2020); DOI:10.1063/5.0024134

43) X. Qin and S. Hirata, “Anharmonic Phonon Dispersion in Polyethylene”, Journal of Physical Chemistry B 124 (46), pp. 10477–10485 (2020); DOI:10.1021/acs.jpcb.0c08493

42) J. Kim, A. Panyala, B. Peng, K. Kowalski, P. Sadayappan and S. Krishnamoorthy, “Scalable Heterogeneous Execution of a Coupled-Cluster Model with Perturbative Triples”, in SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (SC), Atlanta, GA, US, pp. 1112-1126 (2020); DOI:10.1109/SC41405.2020.00083

41) J. P. Heindel and S. S. Xantheas, “The Many-Body Expansion for Aqueous Systems Revisited: I. Water−Water Interactions”, Journal of Chemical Theory and Computation 16 (11), pp. 6843–6855 (2020); DOI:10.1021/acs.jctc.9b00749

40) A. E. Doran and S. Hirata, “Convergence acceleration of Monte Carlo many-body perturbation methods by direct sampling”, The Journal of Chemical Physics 153 (10), pp. 104112 (2020); DOI:110.1063/5.0020583

39) A. E. Doran and S. Hirata, “Convergence acceleration of Monte Carlo many-body perturbation methods by using many control variates”, The Journal of Chemical Physics 153 (9), pp. 094108 (2020); DOI:10.1063/5.0020584

38) C. E. Hoyer and X. Li, “Relativistic two-component projection-based quantum embedding for open-shell systems”, The Journal of Chemical Physics 153, pp. 094113 (2020); DOI:10.1063/5.0012433

37) D. Tzeli, I. Karapetsas, “Quadruple Bonding in the Ground and Low-Lying Excited States of the Diatomic Molecules TcN, RuC, RhB, and PdBe”, The Journal of Physical Chemistry A 124, pp. 6667-6681 (2020); DOI:10.1021/acs.jpca.0c03208

36) C. Paşcu Moca, W. Izumida, B. Dóra, Ö. Legeza, J. K. Asbóth, and G. Zaránd, “Topologically Protected Correlated End Spin Formation in Carbon Nanotubes”, Physical Review Letters 125, pp. 056401 (2020); DOI:10.1103/PhysRevLett.125.056401

35) F. D. Vila, J. J. Rehr, J. J. Kas, K. Kowalski, B. Peng, “Real-time coupled-cluster approach for the cumulant Green's function”, Journal of Chemical Theory and Computation 16 (11), pp. 6983–6992 (2020); DOI:10.1021/acs.jctc.0c00639

34) A. Antalík, D. Nachtigallová, Ra. Lo, M. Matoušek, J. Lang, Ö. Legeza, J. Pittner, P. Hobza, L. Veis, “Ground State of the Fe(II)-porphyrin Model System Corresponds to the Quintet State: A DFT and DMRG-based Tailored CC Study”, Physical Chemistry Chemical Physics 22, pp. 17033-17037 (2020); DOI:10.1039/D0CP03086D

33) S. Hirata and P. K. Jha, “Finite-temperature many-body perturbation theory in the grand canonical ensemble”, The Journal of Chemical Physics 153, pp. 014103 (2020); DOI:10.1063/5.0009679

32) J. S. Jestilä, J. K. Denton, E. H. Perez, T. Khuu, E. Aprà, S. S. Xantheas, M. A. Johnson, E. Uggerud, “Characterization of the Alkali Metal Oxalates (MC2O4) and their formation by CO2 reduction via the Alkali Metal Carbonites (MCO2)”, Physical Chemistry Chemical Physics 22, pp. 7460-7473, (2020); DOI:10.1039/D0CP00547A

31) L. T. Xu and T. H. Dunning, Jr., “Orbital Hybridization in Modern Valence Bond Wave Functions: Methane, Ethylene, and Acetylene,” Journal of Physical Chemistry A 124, pp. 204-214 (2020); DOI:10.1021/acs.jpca.9b11054

30) L. T. Xu, D. L. Cooper, and T. H. Dunning, Jr., “Resolving a Puzzling Anomaly in the Spin-Coupled Generalized Valence Bond Description of Benzene,” Journal of Computational Chemistry 41, pp. 1421-1426 (2020); ;DOI:10.1002/jcc.26185

29) L. T. Xu and T. H. Dunning, Jr., "The Nature of the Chemical Bond and the Role of Non-Dynamical and Dynamical Correlation in Be2,” Journal of Chemical Physics 152, 214111 (2020); DOI:10.1063/5.0010068

28) J. Brandejs, J. Visnak, L. Veis, M. Mate, O. Legeza and J. Pittner, “Toward DMRG-tailored coupled cluster method in the 4c-relativistic domain”, Journal of Chemical Physics 152, 174107 (2020); DOI:10.1063/1.5144974

27) X. Li, N. Govind, C. Isborn, A. E. DePrince III, K. Lopata, “Real-Time Time-Dependent Electronic Structure Theory”, Chem. Rev. 120 (18), pp. 9951–9993 (2020); DOI:10.1021/acs.chemrev.0c00223

26) J. A. Scher, N. Govind, A. Chakraborty. “Evidence of Skewness and Sub-Gaussian Character in Temperature-Dependent Distributions of One Million Electronic Excitation Energies in PbS Quantum Dots,” J. Phys. Chem. Lett 11 (3), 986 (2020); DOI:10.1021/acs.jpclett.9b03103

25) M. Tzavala, J. J. Kas, L. Reining, J. J. Rehr, “Non-linear response in the cumulant expansion for core hole photoemission”, Physical Review Research 2, 033147 (2020); DOI:10.1103/PhysRevResearch.2.033147

24) E. Aprà, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski et al, “NWChem: Past, present, and future”, The Journal of Chemical Physics 152, 184102 (2020); DOI:10.1063/5.0004997

23) J. J. Rehr, F. D. Vila, J. J. Kas, N. Y. Hirshberg, K. Kowalski, B. Peng, “Equation of motion coupled-cluster cumulant approach for intrinsic losses in x-ray spectra”, The Journal of Chemical Physics 152, 174113 (2020); DOI:10.1063/5.0004865

22) B. Peng, K. Kowalski, A. Panyala, S. Krishnamoorthy, "Green’s function coupled cluster simulation of the near-valence ionizations of DNA-fragments", The Journal of Chemical Physics 152, 011101 (2020); DOI:10.1063/1.5138658

21) A. Shee and D. Zgid, "Coupled Cluster as an Impurity Solver for Green’s Function Embedding Methods", Journal of Chemical Theory and Computation 15 (11), pp. 6010-6024 ( 2019); DOI:10.1021/acs.jctc.9b00603

20) P. K. Jha and S. Hirata, "Finite-temperature many-body perturbation theory in the canonical ensemble" Physical Review E 101, 022106 (2019), DOI:10.1103/PhysRevE.101.022106

19) L. N. Koulias, D. B. Williams-Young, D. R. Nascimento, A. E. DePrince III, X. Li, "Relativistic Real-Time Time-Dependent Equation-of-Motion Coupled-Cluster", Journal of Chemical Theory and Computation 15, pp. 6617–6624 (2019); DOI:10.1021/acs.jctc.9b00729

18) A. E. Doran, S. Hirata, "Monte Carlo Second- and Third-Order Many-Body Green’s Function Methods with Frequency-Dependent, Nondiagonal Self-Energy", Journal of Chemical Theory and Computation 15, pp. 6097−6110 (2019); DOI:10.1021/acs.jctc.9b00693

17) S. Hirata and P. K. Jha, "Chapter Two - Converging finite-temperature many-body perturbation theory in the grand canonical ensemble that conserves the average number of electrons”, Annual Reports in Computational Chemistry 15, pp. 17–37 (2019); DOI:10.1016/bs.arcc.2019.08.003

16) P. K. Jha and S. Hirata , “Chapter One - Numerical evidence invalidating finite-temperature many-body perturbation theory” Annual Reports in Computational Chemistry 15, pp. 3–15 (2019); DOI:10.1016/bs.arcc.2019.08.002

15) B. Peng, R. van Beeumen, D. B. Williams-Young, K. Kowalski, C. Yang, "Approximate Green's Function Coupled Cluster Method Employing Effective Dimension Reduction" Journal of Chemical Theory and Computation 15 (5), pp. 3185-3196 (2019); DOI:10.1021/acs.jctc.9b00172

14) C. E. Hoyer , D. B. Williams-Young, C. Huang, and X. Li, "Embedding non-collinear two-component electronic structure in a collinear quantum environment" Journal of Chemical Physics 150, 174114 (2019); DOI:10.1063/1.5092628

13) L. T. Xu, J. V. K. Thompson, T. H. Dunning Jr., "Spin-Coupled Generalized Valence Bond Description of Group 14 Species: The Carbon, Silicon and Germanium Hydrides, XHn (n = 1–4)", Journal of Physical Chemistry A, 123 (12), pp. 2401–2419 (2019); DOI:10.1021/acs.jpca.9b00376

12) M. Mayer, V. van Lessen, M. Rohdenburg, G.-L. Hou, Z. Yang, R. M. Exner, E. Aprà, V. A. Azov, S. Grabowsky, S. S. Xantheas, K. R. Asmis, X.-B. Wang, C. Jenne, J. Warneke, “Rational design of an argon-binding superelectrophilic anion”, Proceedings of the National Academy (USA) 116 (17), pp. 8167-8172 (2019); DOI:10.1073/pnas.1820812116

11) E. Aprà, J. Warneke, S. S. Xantheas, X.-B. Wang, “A benchmark photoelectron spectroscopic and theoretical study of the electronic stability of [B12H12]2-”, The Journal of Chemical Physics 150 (16), 164306 (2019); DOI:10.1063/1.5089510

10) J. Warneke, S. Z. Konieczka, G.-L. Hou, E. Aprà, C. Kerpen, F. Keppner, T. C. Schäfer, M. Deckert, Z. Yang, E. J. Bylaska, G. E. Johnson, J. Laskin, S. S. Xantheas, X.-B. Wang, M. Finze, “Properties of perhalogenated closo-B10 and closo-B11 multiply charged anions and a critical comparison with closo-B12 in the gas and the condensed phase”, Physical Chemistry Chemical Physics 21 (11), pp. 5903-5915 (2019); DOI:10.1039/C8CP05313H. Inside back cover

9) G. Liu, E. Miliordos, G. Liu, S. N. Ciborowski, M. Tschurl, U. Boesl, U. Heiz, X. Zhang, S. S. Xantheas, and K. H. Bowen, “Water Activation by Single Metal-Atom Anions”, Communication to the Editor, The Journal of Chemical Physics 149 (22), 221101 (2018); DOI:10.1063/1.5050913

8) B. Peng and K. Kowalski, "Green's function coupled cluster formulations utilizing extended inner excitations", The Journal of Chemical Physics 149 (21), 214102 (2018); DOI:10.1063/1.5046529

7) K. Kowalski, J. Brabec, B. Peng, "Regularized and Renormalized Many-body Techniques for Describing Correlated Molecular Systems: A Coupled-Cluster Perspective", Annual Reports in Computational Chemistry, volume 14, 1st Edition, Elsevier, pp. 3–45 (2018); DOI:10.1016/bs.arcc.2018.06.001

6) J. Zhang, “Origins of the enantioselectivity of a palladium catalyst with BINOL–phosphoric acid ligands”, Organic Biomolecular Chemistry 16 (43), pp. 8064–8071 (2018); DOI:10.1039/C8OB02271B

5) C. M. Johnson, A. E. Doran, S. L. Ten-no, and S. Hirata, “Monte Carlo explicitly correlated many-body Green’s function theory”, The Journal of Chemical Physics 149 (17), 174112 (2018); DOI:10.1063/1.5054610

4) K. Blaziak, D. Tzeli, S. S. Xantheas and E. Uggerud, “The activation of carbon dioxide by first row transition metals (Sc – Zn)”, Physical Chemistry Chemical Physics 20 (39), pp. 25495–25505 (2018); DOI:10.1039/C8CP04231D

3) B. Peng and K. Kowalski, “Green’s Function Coupled-Cluster Approach: Simulating Photoelectron Spectra for Realistic Molecular Systems”, J. Chem. Theory Comput. 14 (8), pp. 4335–4352 (2018); DOI:10.1021/acs.jctc.8b00313

2) K. Kowalski, “Properties of coupled-cluster equations originating in excitation sub-algebras”, The Journal of Chemical Physics 148 (9), 094104 (2018); DOI:10.1063/1.5010693

1) J. Warneke, G.-L. Hou, E. Aprà, C. Jenne, Z. Yang, Z. Qin, K. Kowalski, X.-B. Wang and S. S. Xantheas, “Electronic Structure and Stability of (B12X12)2- (X = F − At): A Combined Photoelectron Spectroscopic and Theoretical Study”, Journal of the American Chemical Society 139 (41), pp. 14749–14756 (2017); DOI:10.1021/jacs.7b08598