PHASE 2: October 1st 2021 - September 30th 2025
163) M. J. Moghadam, K. Boguslawski, R. Doucet, Ö. Legeza, P. Tecmer, S. De Baerdemacker, "Correlation in Dipeptide Systems form Quantum Information Theory Perspectives" ChemRxiv preprint (2024); chemrxiv-2024-2qs86
162) A. Menczer, Ö. Legeza, "Cost optimized ab initio tensor network state methods: industrial perspectives", arXiv preprint (2024); arXiv:2412.04676
161) G. Friesecke, M. A. Werner, K. Kapas, A. Menczer, Ö. Legeza, "Global fermionic mode optimization via swap gates", arXiv preprint (2024); arXiv:2406.03449
160) J. Višňák, J. Brandejs, M. Máté, L. Visscher, Ö. Legeza, J. Pittner, "DMRG-tailored coupled cluster method in the 4c-relativistic domain: General implementation and application to the NUHFI and NUF3 molecules", arXiv preprint (2024); arXiv:2403.18473
159) A. Menczer, Ö. Legeza, "Massively Parallel Tensor Network State Algorithms on Hybrid CPU-GPU Based Architectures", arXiv preprint (2023); arXiv:2305.05581v1
158) J. Kovács, A. T. Kruppa, Ö. Legeza, P. Salamon, "Mode entanglement and isospin pairing in two-nucleon systems", Journal of Physics G: Nuclear and Particle Physics 52, 015105 (2025); DOI:10.1088/1361-6471/ad9345
157) D. Tzeli, P. Golub, J. Brabec, M. Matoušek, K. Pernal, L. Veis, S. Raugei, and S. S. Xantheas, "Importance of Electron Correlation on the Geometry and Electronic Structure of [2Fe−2S] Systems: A Benchmark Study of the [Fe2S2(SCH3)4]2−,3−,4−, [Fe2S2(SCys)4]2−, [Fe2S2(S‑p‑tol)4]2−, and [Fe2S2(S‑o‑xyl)4]2− Complexes", Journal of Chemical Theory and Computation 20 (23), pp. 10406–10423 (2024); DOI:10.1021/acs.jctc.4c00781
156) K. Kowalski, N. P. Bauman, G. H. Low, M. Roetteler, J. J. Rehr, F. D. Vila, "Capturing many-body correlation effects with quantum and classical computing", Phys. Rev. A 110, L060401 (2024); DOI:10.1103/PhysRevA.110.L060401
155) S. Hirata, "Thermal quasi-particle theory", The Journal of Chemical Physics 161, 214109 (2024); DOI:10.1063/5.0235260
154) P. Gu and S. Hirata, "Thermal mean-field theories", The Journal of Chemical Physics 161, 214108 (2024); DOI:10.1063/5.0235259
153) B. Peng, H. Pathak, A. Panyala, F. D. Vila, J. J. Rehr, K. Kowalski, "Exploring the exact limits of the real-time equation-of-motion coupled cluster cumulant Green's functions", Special Collection: 2024 JCP Emerging Investigators Special Collection, The Journal of Chemical Physics 161, 204102 (2024); DOI:10.1063/5.0233339
152) P. Penc, C. Paşcu Moca, Ö. Legeza, T. Prosen, G. Zaránd, M. A. Werner, "Loss-induced quantum information jet in an infinite temperature Hubbard chain", Physical Review Letters 133 (19), 190403 (2024); DOI:10.1103/PhysRevLett.133.190403
151) A. Menczer, Ö. Legeza, "Tensor Network State Algorithms on AI Accelerators", Journal of Chemical Theory and Computation 20 (20), pp. 8897–8910 (2024); DOI:10.1021/acs.jctc.4c00800
150) J. C. Cruz and S. Hirata, "Monte Carlo explicitly correlated second-order many-body Green's function calculations of semiconductor band gaps", "Rodney J. Bartlett Festschrift" (invited), The Journal of Physical Chemistry C 128 (40), pp. 17098–17111 (2024); DOI:10.1021/acs.jpcc.4c03848
149) E. Bylaska, A. Panyala, N. Bauman, B. Peng, H. Pathak, D. Mejia-Rodriguez, N. Govind et al, "Electronic structure simulations in the cloud computing environment", The Journal of Chemical Physics 161 (15), 150902 (2024); DOI:10.1063/5.0226437
148) A. Menczer, M. van Damme, A. Rask, L. Huntington, J. Hammond, S. S. Xantheas, M. Ganahl, Ö. Legeza, "Parallel implementation of the Density Matrix Renormalization Group method achieving a quarter petaFLOPS performance on a single DGX-H100 GPU node", Journal of Chemical Theory and Computation 20 (19), pp. 8397−8404 (2024); DOI:10.1021/acs.jctc.4c00903
147) B. Osváth, G. Barcza, Ö. Legeza, B. Dóra, L. Oroszlány, "A simple electronic ladder model harboring ℤ4 parafermions", Physical Review B 110 (10), 085304 (2024); DOI:10.1103/PhysRevB.110.085304
146) R. Babar, G. Barcza, A. Pershin, H. Park, O. Bulancea Lindvall, G. Thiering, Ö. Legeza, J. H. Warner, I. A. Abrikosov, A. Gali, V. Ivady, "Low-symmetry vacancy-related spin qubit in hexagonal boron nitride", npj Computational Materials 10, 184 (2024); DOI:10.1038/s41524-024-01361-z
145) A. Tichai, K. Kapás, T. Miyagi, M. A. Werner, Ö. Legeza, A. Schwenk, G. Zarand, "Spectroscopy of N=50 isotones with the valence-space density matrix renormalization group", Physics Letters B 855, 138841, (2024); DOI:10.1016/j.physletb.2024.138841
144) D. Szombathy, M. A. Werner, C. P. Moca, Ö. Legeza, A. Hamo, S. Ilani, G. Zaránd, "Collective tunneling of a Wigner necklace in carbon nanotubes", Physical Review B 109 (24), 245139 (2024); DOI:10.1103/PhysRevB.109.245139
143) S. Hirata, I. Grabowski, J. V. Ortiz, and R. J. Bartlett, "Nonconvergence of the Feynman-Dyson diagrammatic perturbation expansion of propagators", Physical Review A, 109 (5), 052220 (2024); DOI:10.1103/PhysRevA.109.052220
142) K. Petrov, A. Ganyecz, Z. Benedek, A. Olasz, G. Barcza, and Ö. Legeza, "Part III. Molecular Systems.- Low-Cost Generation of Optimal Molecular Orbitals for Multi-Reference CI Expansion: Natural Orbitals versus Rényi Entropy-Minimized Orbitals Provided by the Density-Matrix Renormalization Group" in Advances in Methods and Applications of Quantum Systems in Chemistry, Physics, and Biology: Selected Proceedings of QSCP-XXV Conference (Torun, Poland, June 2022).Editors: Ireneusz Grabowski, Karolina Slowik, Jean Maruani, Erkki J. Brandas, Springer Nature (Cham, Switzerland), Progress in Theoretical Chemistry and Physics series, ISBN-13:9783031520778, ISBN-10:3031520777, volume 34 (2024); DOI:10.1007/978-3-031-52078-5_9
141) G. D. Santis, Y. Okura, K. Hirata, S.-I. Ishiuchi, M. Fujii, and S. S. Xantheas, "Affinity of nicotinoids to a model nicotinic acetylcholine receptor (nAChR) binding pocket in the human brain", Gregory A. Voth Festschrift (invited), Journal of Physical Chemistry B 128 (19), pp. 14577–4589 (2024); DOI:10.1021/acs.jpcb.3c07919
140) A. Menczer, K. Kapás, M. A. Werner, Ö. Legeza, "Two-dimensional quantum lattice models via mode optimized hybrid CPU-GPU density matrix renormalization group method", Physical Review B 109 (19), 195148 (2024); DOI:10.1103/PhysRevB.109.195148
139) F. D. Vila, J. J. Rehr, K. Kowalski, and B. Peng, "RT-EOM-CCSD Calculations of Inner and Outer Valence Ionization Energies and Spectral Functions", Journal of Chemical Theory and Computation 20 (5), pp. 1796-1801 (2024);DOI:10.1021/acs.jctc.3c01371
138) D. Mejia-Rodriguez, "Exploiting a derivative discontinuity estimate for accurate G0W0 ionization potentials and electron affinities", Special Issue "Emerging Leaders 2023" (invited), Electronic Structure 6, 015012 (2024); DOI:10.1088/2516-1075/ad3124
137) R. Zuzak, M. Kumar, O. Stoica, D. Soler, J. Brabec, K. Pernal, L. Veis, R. Blieck, A. Echavarren, P. Jelinek, S. Godlewski, "On-Surface Synthesis and Determination of the Open-Shell Singlet Ground State of Tridecacene", Angewandte Chemie 136 (9), e202317091 (2024); DOI:10.1002/ange.202317091
136) S. Song, A. Pinar Solé, A. Matěj, G. Li, O. Stetsovych, D. Soler, H., M. Telychko, J. Li, M. Kumar, J. Brabec, L. Veis, J. Wu, P. Jelinek, J. Lu, "Highly-Entangled Polyradical Nanographene with Coexisting Strong Correlation and Topological Frustration", Nature Chemistry 16 (6), 938-944 (2024); DOI:10.1038/s41557-024-01453-9
135) H. Helal, J. Firoz, J. A. Bilbrey, H. Sprueill, K. M. Herman, M. M. Krell, T. Murray, M. L. Roldan, M. Kraus, A. Li, P. Das, S. S. Xantheas, and S. Choudhury, "Acceleration of Graph Neural Network-based Prediction Models in Chemistry via Co-design Optimization on Intelligence Processing Units", Journal of Chemical Information and Modeling 64 (5), pp. 1568–1580 (2024) DOI:10.1021/acs.jcim.3c01312
134) D. Tzeli and S. S. Xantheas, "Erratum: Breaking covalent bonds in the context of the many-body expansion (MBE). I. The purported ‘first row anomaly’ in XHn (X = C, Si, Ge, Sn; n = 1–4)” [J. Chem. Phys. 156, 244303 (2022)]", Journal of Chemical Physics 160, 059901 (2024) DOI:10.1063/5.0196893
133) G. Friesecke, G. Barcza, Ö. Legeza, "Predicting the FCI energy of large systems to chemical accuracy from restricted active space density matrix renormalization group calculations", Journal of Chemical Theory and Computation 20 (1), pp. 87-102 (2024); DOI:10.1021/acs.jctc.3c01001
132) T. H. Dunning, Jr., D. L. Cooper, L. T. Xu, and P. B. Karadakov, "Spin-coupled generalized valence bond theory: An appealing orbital theory of the electronic structure of atoms and molecules", in Comprehensive Computational Chemistry, eds. R. J. Boyd and M. Yáñez, (Elsevier, 2022), Comprehensive Computational Chemistry 1, pp. 354-402 (2024); DOI:10.1016/B978-0-12-821978-2.00017-9
131) A. Panyala, N. Govind, K. Kowalski, N. Bauman, B. Peng, H. Pathak, E. Mutlu, D. Mejia Rodriguez, S. Xantheas and S. Krishnamoorthy, "ExaChem/exachem" Computer Software. https://github.com/ExaChem/exachem USDOE. 28 Jun. 2023 ; DOI:10.11578/dc.20230628.1
130) O. Demel, J. Brandejs, J. Lang, J. Brabec, L. Veis, Ö. Legeza, J. Pittner, "Hilbert space multireference coupled clusters tailored by matrix product states", The Journal of Chemical Physics 159 (22), 224115 (2023); DOI:10.1063/5.0174461
129) F. Gebhard, K. Bauerbach, Ö. Legeza, "Generic Mott-Hubbard phase diagram for extended Hubbard models without Umklapp scattering", Phys. Rev. B 108 (20), 205130 (2023); DOI:10.1103/PhysRevB.108.205130
128) D. Drwal, M. Matousek, P. Golub, A. Tucholska, M. Hapka, J. Brabec, L. Veis, K. Pernal, "The role of spin polarization and dynamic correlation in singlet-triplet gap inversion of heptazine derivatives", Journal of Chemical Theory and Computation 19 (21), pp. 7606-7616 (2023); DOI:10.1021/acs.jctc.3c00781
127) D. Mejia-Rodriguez, A. A Kunitsa, J. L. Fulton, E. Aprà, N. Govind, "G0W0 Ionization Potentials of First-Row Transition Metal Aqua Ions", Journal of Physical Chemistry A 127 (46), pp. 9684-9694 (2023); DOI:10.1021/acs.jpca.3c04419
126) Z. Benedek, R. Babar, Á. Ganyecz, T. Szilvási, Ö. Legeza, G. Barcza and V. Ivády, "Symmetric carbon tetramers forming spin qubits in hexagonal boron nitride", npj Computational Materials 9, 187 (2023); DOI:10.1038/s41524-023-01135-z
125) J. P. Heindel, K. M. Herman, and Sotiris S. Xantheas, "Many-Body Effects in Aqueous Systems: Synergies Between Interaction Analysis Techniques and Force Field Development", Annual Review of Physical Chemistry 74, pp. 337-360 (2023); DOI:10.1146/annurev-physchem-062422-023532
124) A. Tichai, S. Knecht, A. T. Kruppa, Ö. Legeza, C. P. Moca, A. Schwenk, M. A. Werner, G. Zarand, "Combining the in-medium similarity renormalization group with the density matrix renormalization group: Shell structure and information entropy", Physics Letters B 845 (10), 138139 (2023); DOI:10.1016/j.physletb.2023.138139
123) M. A. Werner, C. P. Moca, M. Kormos, Ö. Legeza, B. Dora, and G. Zarand, "Spectroscopic evidence for engineered hadron formation in repulsive fermionic SU(N) Hubbard Models", Physical Review Research 5 (4), 043020 (2023); DOI:10.1103/PhysRevResearch.5.043020
122) K. M. Herman, A. J. Stone and S. S. Xantheas, "Accurate Calculation of Many-Body Energies in Water Clusters Using a Classical Geometry-Dependent Induction Model", Journal of Chemical Theory and Computation 19 (19), pp. 6805-6815 (2023); DOI:10.1021/acs.jctc.3c00575
121) R. Di Felice, M. L. Mayes, R. M. Richard, D. B. Williams-Young, G. Kin-Lic Chan, W. A. de Jong, N. Govind, M. Head-Gordon, M. R. Hermes, K. Kowalski, X. Li, H. Lischka, K. T. Mueller, E. Mutlu, A. M. N. Niklasson, M. R. Pederson, B. Peng, R. Shepard, E. F. Valeev, M. van Schilfgaarde, B. Vlaisavljevich, T. L. Windus, S. S. Xantheas, X. Zhang, and P. M. Zimmerman, "A Perspective on Sustainable Computational Chemistry Software Development and Integration", Journal of Chemical Theory and Computation 19 (20), pp. 7056-7076 (2023); DOI:10.1021/acs.jctc.3c00419
120) X. Qin, S. Hirata, "Finite-temperature many-body perturbation theory for vibrations: Recursions, algebraic reduction, second-quantized reduction, diagrammatic rules, linked-diagram theorem, finite-temperature self-consistent field, and general-order algorithm", The Journal of Chemical Physics 159 (8), 084114 (2023); DOI:10.1063/5.0164326
119) E. Mutlu, A. Panyala, K. Kowalski, N. Bauman, B. Peng, J. Brabec, S. Krishnamoorthy, "TAMM: Tensor Algebra for Many-body Methods", The Journal of Chemical Physics 159 (2), 024801 (2023); DOI:10.1063/5.0142433
118) D. Mejia-Rodriguez, E. Aprà, J. Autschbach, Ni. P. Bauman, E. J. Bylaska, N. Govind, J. R. Hammond, K. Kowalski, A. Kunitsa, A. Panyala, B. Peng, J. J. Rehr, H. Song, S. Tretiak, M. Valiev, and F. D. Vila, "NWChem: Recent and Ongoing Developments", Journal of Chemical Theory and Computation 19 (20), pp. 7077–7096 (2023); DOI:10.1021/acs.jctc.3c00421
117) D. B. Williams-Young, N. M. Tubman, C. Mejuto-Zaera, W. A. de Jong "A parallel, distributed memory implementation of the adaptive sampling configuration interaction method", The Journal of Chemical Physics 158 (21), 214109 (2023); DOI:10.1063/5.0148650
116) H. Pathak, A. Panyala, B. Peng, N. P. Bauman, E. Mutlu, J. J. Rehr, F. D. Vila, K. Kowalski, "Real-Time Equation-of-Motion Coupled-Cluster Cumulant Green’s Function Method: Heterogeneous Parallel Implementation Based on the Tensor Algebra for Many-Body Methods Infrastructure", Journal of Chemical Theory and Computation 19 (8), pp. 2248-2257 (2023); DOI:10.1021/acs.jctc.3c00045
115) S. Hirata, Y. Shigeta, S. S. Xantheas, R. J. Bartlett, "Helical organic and inorganic polymers", The Journal of Physical Chemistry virtual Special Issue (invited) "MQM 2022: The 10th Triennial Conference on Molecular Quantum Mechanics", The Journal of Physical Chemistry B 127 (15), pp. 3556-3583 (2023); DOI:10.1021/acs.jpcb.3c00620
114) T. Depastas, G. A. Souliotis, D. Tzeli, and S. S. Xantheas, "Many-body expansion for light nuclear systems", Physical Review C 107, 044004 (2023); DOI:10.1103/PhysRevC.107.044004
113) T. H. Dunning, Jr., M. S. Gordon and S. S. Xantheas, "The nature of the chemical bond", invited Editorial, The Journal of Chemical Physics 158 (13), 130401 (2023); DOI:10.1063/5.0148500
112) A. Shee, C.-N. Yeh, B. Peng, K. Kowalski, D. Zgid, "Triple excitations in Green's function coupled cluster solver for studies of strongly correlated systems in the framework of self-energy embedding theory", The Journal of Physical Chemistry Letters 14 (9), pp. 2416-2424 (2023); DOI:10.1021/acs.jpclett.2c03616
111) J. P. Unsleber, H. Liu, L. Talirz, T. Weymuth, M. Mörchen, A. Grofe, D. Wecker, C. J. Stein, A. Panyala, B. Peng, K. Kowalski, M. Troyer, M. Reiher, "High-throughput ab initio reaction mechanism exploration in the cloud with automated multi-reference validation", The Journal of Chemical Physics 158 (8), 084803 (2023); DOI:10.1063/5.0136526
110) M. Matoušek, M. Hapka, L. Veis, K. Pernal, "Toward more accurate adiabatic connection approach for multireference wave functions", The Journal of Chemical Physics 158 (5), 054105 (2023); DOI:10.1063/5.0131448
109) M. Máté, K. Petrov, S. Szalay, Ö. Legeza, "Compressing multireference character of wave functions via fermionic mode optimization", Journal of Mathematical Chemistry 61, pp. 362-375 (2023); DOI:10.1007/s10910-022-01379-y
108) K. M. Herman and S. S. Xantheas, "A Formulation of the Many-Body Expansion (MBE) for Periodic Systems: Application to Several Ice Phases", The Journal of Physical Chemistry Letters 14 (4), pp. 989-999 (2023); DOI: 10.1021/acs.jpclett.2c03822
107) P. Beran, K. Pernal, F. Pavošević, and L. Veis, ”Projection-Based Density Matrix Renormalization Group in Density Functional Theory Embedding”, The Journal of Physical Chemistry Letters 14 (3), pp. 716-722 (2023); DOI: 10.1021/acs.jpclett.2c03298
106) P. Golub, A. Antalik, P. Beran, J. Brabec, ”Mutual information prediction for strongly correlated systems”, Chemical Physics Letters 813, 140297 (2023); DOI: 10.1016/j.cplett.2023.140297
105) K. M. Herman , E. Aprà and S. S. Xantheas, "A critical comparison of CH…π versus π…π interactions in the benzene dimer: obtaining benchmarks at the CCSD(T) level and assessing the accuracy of lower scaling methods", Physical Chemistry Chemical Physics 25 (6), pp. 4824-4838 (2023); DOI: 10.1039/D2CP04335A
104) T. H. Dunning, Jr. and L. T. Xu "Dynamical electron correlation and the chemical bond. II. Recoupled pair bonds in the a4Σ− states of CH and CF ", The Journal of Chemical Physics 157 (8), 084124 (2022); DOI:10.1063/5.0104693
103) A. Bagusetty, A. Panyala, G. Brown and J. Kirk, "Towards Cross-Platform Portability of Coupled-Cluster Methods with Perturbative Triples using SYCL", 2022 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC), pp. 81-88, Dallas, TX, USA (2022); DOI: 10.1109/p3hpc56579.2022.00013
102) G. Barcza, M. A. Werner, G. Zarand, Ö. Legeza, T. Szilvasi, ”Toward large-scale restricted active space calculations inspired by the Schmidt decomposition”, The Journal of Physical Chemistry A 126 (51), pp. 9709-9718 (2022); DOI: 10.1021/acs.jpca.2c05952
101) F. Gebhard, K. Bauerbach, Ö. Legeza, "Accurate localization of Kosterlitz-Thouless-type quantum phase transitions for one-dimensional spinless fermions", Physical Review B 106, 205133 (2022); DOI: 10.1103/PhysRevB.106.205133
100) M. Z. Makoś, P. K. Gurunathan, S. Raugei, K. Kowalski, V. A. Glezakou, and R. Rousseau, "Modeling Absolute Redox Potentials of Ferrocene in the Condensed Phase", The Journal of Physical Chemistry Letters 13 (42), pp. 10005-10010 (2022); DOI: 10.1021/acs.jpclett.2c02447
99) G. Barcza, A. Pershin, A. Gali and Ö. Legeza, "Excitation spectra of fully correlated donor-acceptor complexes by density matrix renormalisation group", Molecular Physics 120, e2130834 (2022); DOI: 10.1080/00268976.2022.2130834
98) Saad Qadeer, G. D. Santis, P. Stinis and S. S. Xantheas, “Vibrational Levels of a Generalized Morse Potential” The Journal of Chemical Physics 157, 144104 (2022); DOI:10.1063/5.0103433
97) X. Ma, M. Rohdenburg, H. Knorke, S. Kawa, J. K. Liu, E. Aprà, K. R. Asmis, V. A. Azov, J. Laskin, C. Jenne, H. I.Kenttamaa and J. Warneke, "Binding of Saturated and Unsaturated C6-Hydrocarbons to the Electrophilic Anion [B12Br11]−: A Systematic Mechanistic Study", Physical Chemistry Chemical Physics 24 (36), pp. 21759-21772 (2022); DOI:10.1039/d2cp01042a
96) J. Kovács, A. T. Kruppa, P. Salamon, Ö. Legeza, G. Zaránd, "Entanglement and seniority", Physical Review C 106, 024303 (2022); DOI:10.1103/PhysRevC.106.024303
95) V. Prabhakaran, J. Romo, A. Bhattarai, K. George, Z. M. Norberg, D. Kalb, E. Aprà, P. A. Kottke, A. Fedorov, P. Z. El-Khoury, G. E. Johnson, J. Laskin, "Integrated Photoelectrochemical Energy Storage Cells Prepared by Benchtop Ion Soft Landing", Chemical Communications 58 (65), pp. 9060-9063 (2022); DOI:10.1039/D2CC02595G
94) J. Mato, D. Tzeli and S. S. Xantheas, "The Many-Body Expansion for Metals I: The Alkaline Earth metals Be, Mg, and Ca" Special Issue "Nature of the Chemical Bond" (invited), The Journal of Chemical Physics 157, 084313 (2022); DOI:10.1063/5.0094598
93) D. Mejia-Rodriguez, A. Kunitsa, E. Aprà, N. Govind, "Basis Set Selection for Molecular Core-Level GW Calculations" Journal of Chemical Theory and Computation 18 (8), pp. 4919-4926 (2022); DOI:10.1021/acs.jctc.2c00247
92) F. D. Vila, J. J. Rehr, H. Pathak, B. Peng, A. Panyala, E. Mutlu, N. P. Bauman, K. Kowalski, "Real-time equation-of-motion CC cumulant and CC Green's function simulations of photoemission spectra of water and water dimer", The Journal of Chemical Physics 157, 044101 (2022); DOI:10.1063/5.0099192
91) L. T. Xu and T. H. Dunning, Jr., "Dynamical electron correlation and the chemical bond. I. Covalent bonds in AH and AF (A = B–F)", Special Issue "Nature of the Chemical Bond" (invited), The Journal of Chemical Physics 157, 014107 (2022); DOI:10.1063/5.0093414
90) K. M. Herman, A. J. Stone and S. S. Xantheas, "A Classical Model for 3-body Interactions in Aqueous Ionic Systems", Special Issue "Nature of the Chemical Bond" (invited), selected to appear in the American Institute of Physics (AIP) Showcase on "Kudos" "https://www.growkudos.com/publications/10.1063%25252F5.0095739/reader, The Journal of Chemical Physics 157, 024101 (2022); DOI: 10.1063/5.0095739
89) D. Tzeli and S. S. Xantheas, "Breaking Covalent Bonds in the Context of the Many-Body Expansion (MBE): I. The purported "first row anomaly" in XHn (X = C, Si, Ge, Snl n= 1-4)", Special Issue "Nature of the Chemical Bond" (invited), The Journal of Chemical Physics 156, 244303 (2022); DOI:10.1063/5.0095329
88) S. Hirata, "Nonvanishing quadrature derivatives in the analytical gradients of density functional energies in crystals and helices", Peter Gill Special Issue (invited), Molecular Physics, e2086500 (2022); DOI:10.1080/00268976.2022.2086500
87) J. C. Cruz, J. Garza, T. Yanai, S. Hirata, "Stochastic evaluation of four-component relativistic second-order many-body perturbation energies: A potentially quadratic-scaling correlation method", The Journal of Chemical Physics 156, 224102 (2022); DOI:10.1063/5.0091973
86) C. P. Moca, M. A. Werner, Ö. Legeza, T. Prosen, M. Kormos, G. Zaránd, "Simulating Lindbladian evolution with non-abelian symmetries: Ballistic front propagation in the SU(2) Hubbard model with a localized loss", Physical Review B 105, 195144 (2022); DOI:10.1103/PhysRevB.105.195144
85) S. Hirata, "General solution to the Kohn-Luttinger nonconvergence problem", Chemical Physics Letters 800, 139668 (2022); DOI:10.1016/j.cplett.2022.139668
84) P. Pokhilko, C.-N. Yeh, D. Zgid, "Iterative subspace algorithms for finite-temperature solution of Dyson equation" The Journal of Chemical Physics 156, 094101 (2022); DOI:10.1063/5.0082586
83) G. Friesecke, B. R. Graswald, Ö. Legeza, "Exact matrix product state representation and convergence of a fully correlated electronic wavefunction in the infinite basis limit", Physical Review B 105, 165144 (2022); DOI:10.1103/PhysRevB.105.165144
82) F. D. Vila, K. Kowalski, B. Peng, J. J. Kas, J. J. Rehr, “Real-time equation-of-motion CCSD cumulant Green's function”, Journal of Chemical Theory and Computation 18 (3), pp. 1799-1807 (2022); DOI:10.1021/acs.jctc.1c01179
81) C. Mejuto-Zaera, D. Tzeli, D. Williams-Young, N. M. Tubman, M. Matoušek, J. Brabec, L. Veis, S. S. Xantheas, W. A. de Jong, ”The Effect of Geometry, Spin and Orbital Optimization in Achieving Accurate, Fully-Correlated Results for Iron-Sulfur Cubanes”, Journal of Chemical Theory and Computation 18 (2), pp. 687-702 (2022); DOI:10.1021/acs.jctc.1c00830
80) A. Shee, C.-N. Yeh and D. Zgid, ”Exploring Coupled Cluster Green’s function as a method for treating system and environment in Green’s function embedding methods”, Journal of Chemical Theory and Computation 18 (2), pp. 664-676 (2022); DOI:10.1021/acs.jctc.1c00712
79) A. Leszczyk, M. Máté, Ö. Legeza, K. Boguslawski, ”Assessing the accuracy of tailored coupled cluster methods corrected by electronic wave functions of polynomial cost”, Journal of Chemical Theory and Computation 18 (1), pp. 96-117 (2022); DOI:10.1021/acs.jctc.1c00284
78) F. Gebhard, Ö. Legeza, ”Tracing the Mott-Hubbard transition in one-dimensional Hubbard models without Umklapp scattering”, Phys. Rev. B 104, 245118 (2021); DOI:10.1103/PhysRevB.104.245118
77) Q. Yuan, M. Rohdenburg, W. Cao, E. Aprà, J. Landmann, M. Finze, J. Warneke, X.-B. Wang, ”Isolated [B2(CN)6]2-: Small Yet Exceptionally Stable Non-Metal Dianion”, The Journal of Physical Chemistry Letters 12 (50), pp. 12005-12011 (2021); DOI:10.1021/acs.jpclett.1c03533
76) D. Mejia-Rodriguez, A. Kunitsa, E. Aprà and N. Govind, ”Scalable Molecular GW Calculations: Valence and Core Spectra”, Journal of Chemical Theory and Computation 17 (12), pp. 7504-7517 (2021); DOI:10.1021/acs.jctc.1c00738
75) J. P. Heindel and S. S. Xantheas, ”Molecular Dynamics Driven by the Many-Body Expansion (MBE-MD)”, Journal of Chemical Theory and Computation 17 (12), pp. 7341-7352 (2021); DOI:10.1021/acs.jctc.1c00780
74) P. Beran, M. Matoušek, M. Hapka, K. Pernal, L. Veis, ”Density Matrix Renormalization Group with Dynamical Correlation via Adiabatic Connection”, Journal of Chemical Theory and Computation 17 (12), pp. 7575-7585 (2021); DOI:10.1021/acs.jctc.1c00896
73) B. Peng, N. P. Bauman, S. Gulania, K. Kowalski, ”Chapter Two - Coupled cluster Green's function: Past, Present, and Future”, Annual Reports in Computational Chemistry 17, pp. 23-53 (2021); DOI:10.1016/bs.arcc.2021.08.002
72) S. Szalay, Z. Zimboras, M. Mate, G. Barcza, C. Schilling, Ö. Legeza, ”Fermionic systems for quantum information people”, Journal of Physics A: Mathematical and Theoretical 54 (39), 393001 (2021); DOI:10.1088/1751-8121/ac0646
PHASE 1: October 1st 2017 - September 30th 2021
71) T. H. Dunning, L. T. Xu, J. V. K Thompson, "New Insights into the Remarkable Difference between CH5− and SiH5−", Journal of Physical Chemistry A, 1 pp. 7414-7424 (2021); DOI:10.1021/acs.jpca.1c05357
70) F. D. Villa, J. J. Kas, J. J. Rehr, K. Kowalski, B. Peng, "Equation-of-Motion Coupled-Cluster Cumulant Green’s Function for Excited States and X-ray Spectra",Frontiers in Chemistry, 9, 734945 (2021); DOI:10.3389/fchem.2021.734945
69) P. Golub, A. Antalik, L. Veis, J. Brabec, ”Machine Learning-Assisted Selection of Active Spaces for Strongly Correlated Transition Metal Systems”, Journal of Chemical Theory and Computation 17 (10), pp. 6053-6072 (2021); DOI:10.1021/acs.jctc.1c00235
68) D. Tzeli, S. Raugei, S. S. Xantheas, ”Quantitative Account of the Bonding Properties of a Rubredoxin Model Complex [Fe(SCH3)4]q, q = −2, −1, +2, +3”, Journal of Chemical Theory and Computation 17 (10), pp. 6080-6091 (2021); DOI:10.1021/acs.jctc.1c00485
67) S. Hirata, ”Finite-temperature many-body perturbation theory for electrons: Algebraic recursive definitions, second-quantized derivation, linked-diagram theorem, general-order algorithms, grand canonical and canonical ensembles”, The Journal of Chemical Physics 155 (9), 094106 (2021); DOI:10.1063/5.0061384
66) C.-N. Yeh, A. Shee and D. Zgid, ”Testing the Green's function coupled cluster singles and doubles impurity solver on real materials within the framework of self-energy embedding theory”, Physical Review B 103 (15), 155158 (2021); DOI:10.1103/PhysRevB.103.155158
65) A. E. Doran, D. L. Qiu, and S. Hirata, ”Monte Carlo MP2-F12 for Noncovalent Interactions: The C60 Dimer”, The Journal of Physical Chemistry A 125 (33), pp. 7344-7351 (2021); DOI:10.1021/acs.jpca.1c05021
64) C. Krumnow, L. Veis, J. Eisert, Ö. Legeza, ”Effective dimension reduction with mode transformations: Simulating two-dimensional fermionic condensed matter systems”, Physical Review B 104, 075137 (2021); DOI:10.1103/PhysRevB.104.075137
63) J. P. Heindel, K. M. Herman, E. Aprà, and S. S. Xantheas, ”Guest-Host Interactions in Clathrate Hydrates: Benchmark MP2 and CCSD(T)/CBS Binding Energies of CH4, CO2 and H2S in (H2O)20 Cages”, The Journal of Physical Chemistry Letters 12 (31), pp. 7574-7582 (2021); DOI:10.1021/acs.jpclett.1c01884
62) T. H. Dunning Jr. and L. T. Xu, ”Nature of the Bonding in the Bifluoride Anion, FHF–”, The Journal of Physical Chemistry Letters 12 (30), pp. 7293-7298 (2021); DOI:10.1021/acs.jpclett.1c02123
61) B. C. Cooper, L. N. Koulias, D. R. Nascimento, X. Li, and A. E. DePrince, ”Short Iterative Lanczos Integration in Time-Dependent Equation-of-Motion Coupled-Cluster Theory”, The Journal of Physical Chemistry A 125 (24), pp. 5438-5447 (2021); DOI:10.1021/acs.jpca.1c01102
60) T. Zhang, X. Liu, E. F. Valeev, and X. Li, ”Toward the Minimal Floating Operation Count Cholesky Decomposition of Electron Repulsion Integrals”, The Journal of Physical Chemistry A 125 (19), pp. 4258-4265 (2021); DOI:10.1021/acs.jpca.1c02317
59) A. Grofe, J. Gao, and X. Li, ”Exact-two-component block-localized wave function: A simple scheme for the automatic computation of relativistic ΔSCF”, The Journal of Chemical Physics 155, 014103 (2021); DOI:10.1063/5.0054227
58) X. Qin and S. Hirata, ”Finite-temperature vibrational full configuration interaction”, Molecular Physics 119, e1949503 (2021); DOI:10.1080/00268976.2021.1949503
57) A. Pershin, G. Barcza, Ö. Legeza, A. Gali, "Highly tunable magneto-optical response form MgV color centers in diamond", Nature Physics Journal Quantum information 7, 99 (2021); DOI:10.1038/s41534-021-00439-6
56) T. H. Dunning Jr., L. T. Xu, D. L. Cooper, and P. B. Karadakov, “Spin-Coupled Generalized Valence Bond Theory: New Perspectives on the Electronic Structure of Molecules and Chemical Bonds”, The Journal of Physical Chemistry A 125 (10), pp. 2021-2050 (2021); DOI:10.1021/acs.jpca.0c10472
55) A. E. Doran and S. Hirata, “Stochastic evaluation of fourth-order many-body perturbation energies”, The Journal of Chemical Physics 154 (13), 134114 (2021); DOI:10.1063/5.0047798
54) B. Peng, A. Panyala, K. Kowalski, S. Krishnamoorthy, “GFCCLib: Scalable and Efficient Coupled-Cluster Green's Function Library for Accurately Tackling Many Body Electronic Structure Problems”, Computer Physics Communications 265, 108000 (2021); DOI:10.1016/j.cpc.2021.108000
53) K. M. Herman, J. P. Heindel and S. S. Xantheas, “The Many-Body Expansion for Aqueous Systems Revisited: III. Hofmeister ion - water interactions”, Physical Chemistry Chemical Physics 23 (19), pp. 11196-11210 (2021); DOI:10.1039/D1CP00409C
52) J. P. Heindel and S. S. Xantheas, “The Many-Body Expansion for Aqueous Systems Revisited: II. Alkali Metal and Halide Ion–Water Interactions”, Journal of Chemical Theory and Computation 17 (4), pp. 2200-2216 (2021); DOI:10.1021/acs.jctc.0c01309
51) A. Nowak, Ö. Legeza, K. Boguslawski, “Orbital entanglement and correlation from pCCD-tailored Coupled Cluster wave functions”, The Journal of Chemical Physics 154 (8), 084111 (2021); DOI:10.1063/5.0038205
50) M. Máté, Ö. Legeza, R. Schilling, M. Yousif, C. Schilling, “How creating one additional well can generate Bose-Einstein condensation”, Communication Physics 4, 29 (2021); DOI:10.1038/s42005-021-00533-3
49) S. Hirata, “Low-temperature breakdown of many-body perturbation theory for thermodynamics” Physical Review A 103 (1), pp. 012223 (2021); DOI:10.1103/PhysRevA.103.012223
48) G. Barcza, V. Ivády, T. Szilvási, M. Vörös, L. Veis, Á. Gali, and Ö. Legeza, “DMRG on Top of Plane-Wave Kohn–Sham Orbitals: A Case Study of Defected Boron Nitride”, Journal of Chemical Theory and Computation 17 (2), pp. 1143-1154 (2021); DOI:10.1021/acs.jctc.0c00809
47) J. Brabec, J. Brandejs, K. Kowalski, S. Xantheas, Ö. Legeza, L. Veis, “Massively parallel quantum chemical density matrix renormalization group method”, Journal of Computational Chemistry 42 (8), pp. 534-544 (2021); DOI:10.1002/jcc.26476
46) A. T. Kruppa, J. Kovács, P. Salamon and Ö. Legeza, “Entanglement and correlation in two-nucleon systems”, Journal of Physics G: Nuclear and Particle Physics 48 (2), pp. 025107 (2021); DOI:10.1088/1361-6471/abc2dd
45) L. T. Xu and T. H. Dunning, Jr., “Orbital Hybridization in Modern Valence Bond Wave Functions: Methane, Ethylene, and Acetylene,” Journal of Physical Chemistry A 124, pp. 204-214 (2020); DOI:10.1021/acs.jpca.9b11054. Correction in Journal of Physical Chemistry A 125 (40), pp. 9026 (2021); DOI:10.1021/acs.jpca.1c08386
44) J. M. Kasper, T. F. Stetina, A. J. Jenkins, and X. Li , ”Ab initio methods for L-edge x-ray absorption spectroscopy”, Chemical Physics Reviews 1, pp. 011304 (2020); DOI:10.1063/5.0029725
43) L. T. Xu and T. H. Dunning, Jr., “A cautionary tale: Problems in the valence-CASSCF description of the ground state (X1Σ+) of BF”, The Journal of Chemical Physics 153 (11), 114113 (2020); DOI:10.1063/5.0024134
42) X. Qin and S. Hirata, “Anharmonic Phonon Dispersion in Polyethylene”, Journal of Physical Chemistry B 124 (46), pp. 10477-10485 (2020); DOI:10.1021/acs.jpcb.0c08493
41) J. Kim, A. Panyala, B. Peng, K. Kowalski, P. Sadayappan and S. Krishnamoorthy, “Scalable Heterogeneous Execution of a Coupled-Cluster Model with Perturbative Triples”, in SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (SC), Atlanta, GA, US, pp. 1112-1126 (2020); DOI:10.1109/SC41405.2020.00083
40) J. P. Heindel and S. S. Xantheas, “The Many-Body Expansion for Aqueous Systems Revisited: I. Water−Water Interactions”, Journal of Chemical Theory and Computation 16 (11), pp. 6843-6855 (2020); DOI:10.1021/acs.jctc.9b00749
39) A. E. Doran and S. Hirata, “Convergence acceleration of Monte Carlo many-body perturbation methods by direct sampling”, The Journal of Chemical Physics 153 (10), 104112 (2020); DOI:110.1063/5.0020583
38) A. E. Doran and S. Hirata, “Convergence acceleration of Monte Carlo many-body perturbation methods by using many control variates”, The Journal of Chemical Physics 153 (9), 094108 (2020); DOI:10.1063/5.0020584
37) C. E. Hoyer and X. Li, “Relativistic two-component projection-based quantum embedding for open-shell systems”, The Journal of Chemical Physics 153, 094113 (2020); DOI:10.1063/5.0012433
36) D. Tzeli, I. Karapetsas, “Quadruple Bonding in the Ground and Low-Lying Excited States of the Diatomic Molecules TcN, RuC, RhB, and PdBe”, The Journal of Physical Chemistry A 124, pp. 6667-6681 (2020); DOI:10.1021/acs.jpca.0c03208
35) C. Paşcu Moca, W. Izumida, B. Dóra, Ö. Legeza, J. K. Asbóth, and G. Zaránd, “Topologically Protected Correlated End Spin Formation in Carbon Nanotubes”, Physical Review Letters 125, pp. 056401 (2020); DOI:10.1103/PhysRevLett.125.056401
34) F. D. Vila, J. J. Rehr, J. J. Kas, K. Kowalski, B. Peng, “Real-time coupled-cluster approach for the cumulant Green's function”, Journal of Chemical Theory and Computation 16 (11), pp. 6983-6992 (2020); DOI:10.1021/acs.jctc.0c00639
33) A. Antalík, D. Nachtigallová, Ra. Lo, M. Matoušek, J. Lang, Ö. Legeza, J. Pittner, P. Hobza, L. Veis, “Ground State of the Fe(II)-porphyrin Model System Corresponds to the Quintet State: A DFT and DMRG-based Tailored CC Study”, Physical Chemistry Chemical Physics 22, pp. 17033-17037 (2020); DOI:10.1039/D0CP03086D
32) S. Hirata and P. K. Jha, “Finite-temperature many-body perturbation theory in the grand canonical ensemble”, The Journal of Chemical Physics 153, 014103 (2020); DOI:10.1063/5.0009679
31) J. S. Jestilä, J. K. Denton, E. H. Perez, T. Khuu, E. Aprà, S. S. Xantheas, M. A. Johnson, E. Uggerud, “Characterization of the Alkali Metal Oxalates (MC2O4−) and their formation by CO2 reduction via the Alkali Metal Carbonites (MCO2−)”, Physical Chemistry Chemical Physics 22, pp. 7460-7473, (2020); DOI:10.1039/D0CP00547A
30) L. T. Xu, D. L. Cooper, and T. H. Dunning, Jr., “Resolving a Puzzling Anomaly in the Spin-Coupled Generalized Valence Bond Description of Benzene,” Journal of Computational Chemistry 41, pp. 1421-1426 (2020); ;DOI:10.1002/jcc.26185
29) L. T. Xu and T. H. Dunning, Jr., "The Nature of the Chemical Bond and the Role of Non-Dynamical and Dynamical Correlation in Be2,” The Journal of Chemical Physics 152, 214111 (2020); DOI:10.1063/5.0010068
28) J. Brandejs, J. Visnak, L. Veis, M. Mate, Ö. Legeza and J. Pittner, “Toward DMRG-tailored coupled cluster method in the 4c-relativistic domain”, The Journal of Chemical Physics 152, 174107 (2020); DOI:10.1063/1.5144974
27) X. Li, N. Govind, C. Isborn, A. E. DePrince III, K. Lopata, “Real-Time Time-Dependent Electronic Structure Theory”, Chem. Rev. 120 (18), pp. 9951-9993 (2020); DOI:10.1021/acs.chemrev.0c00223
26) J. A. Scher, N. Govind, A. Chakraborty. “Evidence of Skewness and Sub-Gaussian Character in Temperature-Dependent Distributions of One Million Electronic Excitation Energies in PbS Quantum Dots,” J. Phys. Chem. Lett. 11 (3), pp. 986-992 (2020); DOI:10.1021/acs.jpclett.9b03103
25) M. Tzavala, J. J. Kas, L. Reining, J. J. Rehr, “Non-linear response in the cumulant expansion for core hole photoemission”, Physical Review Research 2, 033147 (2020); DOI:10.1103/PhysRevResearch.2.033147
24) E. Aprà, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski et al, “NWChem: Past, present, and future”, The Journal of Chemical Physics 152, 184102 (2020); DOI:10.1063/5.0004997
23) J. J. Rehr, F. D. Vila, J. J. Kas, N. Y. Hirshberg, K. Kowalski, B. Peng, “Equation of motion coupled-cluster cumulant approach for intrinsic losses in x-ray spectra”, The Journal of Chemical Physics 152, 174113 (2020); DOI:10.1063/5.0004865
22) B. Peng, K. Kowalski, A. Panyala, S. Krishnamoorthy, "Green’s function coupled cluster simulation of the near-valence ionizations of DNA-fragments", The Journal of Chemical Physics 152, 011101 (2020); DOI:10.1063/1.5138658
21) A. Shee and D. Zgid, "Coupled Cluster as an Impurity Solver for Green’s Function Embedding Methods", Journal of Chemical Theory and Computation 15 (11), pp. 6010-6024 (2019); DOI:10.1021/acs.jctc.9b00603
20) P. K. Jha and S. Hirata, "Finite-temperature many-body perturbation theory in the canonical ensemble" Physical Review E 101, 022106 (2019), DOI:10.1103/PhysRevE.101.022106
19) L. N. Koulias, D. B. Williams-Young, D. R. Nascimento, A. E. DePrince III, X. Li, "Relativistic Real-Time Time-Dependent Equation-of-Motion Coupled-Cluster", Journal of Chemical Theory and Computation 15, pp. 6617-6624 (2019); DOI:10.1021/acs.jctc.9b00729
18) A. E. Doran, S. Hirata, "Monte Carlo Second- and Third-Order Many-Body Green’s Function Methods with Frequency-Dependent, Nondiagonal Self-Energy", Journal of Chemical Theory and Computation 15, pp. 6097-6110 (2019); DOI:10.1021/acs.jctc.9b00693
17) S. Hirata and P. K. Jha, "Chapter Two - Converging finite-temperature many-body perturbation theory in the grand canonical ensemble that conserves the average number of electrons”, Annual Reports in Computational Chemistry 15, pp. 17-37 (2019); DOI:10.1016/bs.arcc.2019.08.003
16) P. K. Jha and S. Hirata , “Chapter One - Numerical evidence invalidating finite-temperature many-body perturbation theory” Annual Reports in Computational Chemistry 15, pp. 3-15 (2019); DOI:10.1016/bs.arcc.2019.08.002
15) B. Peng, R. van Beeumen, D. B. Williams-Young, K. Kowalski, C. Yang, "Approximate Green's Function Coupled Cluster Method Employing Effective Dimension Reduction" Journal of Chemical Theory and Computation 15 (5), pp. 3185-3196 (2019); DOI:10.1021/acs.jctc.9b00172
14) C. E. Hoyer , D. B. Williams-Young, C. Huang, and X. Li, "Embedding non-collinear two-component electronic structure in a collinear quantum environment" The Journal of Chemical Physics 150, 174114 (2019); DOI:10.1063/1.5092628
13) L. T. Xu, J. V. K. Thompson, T. H. Dunning Jr., "Spin-Coupled Generalized Valence Bond Description of Group 14 Species: The Carbon, Silicon and Germanium Hydrides, XHn(n = 1–4)", Journal of Physical Chemistry A, 123 (12), pp. 2401-2419 (2019); DOI:10.1021/acs.jpca.9b00376
12) M. Mayer, V. van Lessen, M. Rohdenburg, G.-L. Hou, Z. Yang, R. M. Exner, E. Aprà, V. A. Azov, S. Grabowsky, S. S. Xantheas, K. R. Asmis, X.-B. Wang, C. Jenne, J. Warneke, “Rational design of an argon-binding superelectrophilic anion”, Proceedings of the National Academy (USA) 116 (17), pp. 8167-8172 (2019); DOI:10.1073/pnas.1820812116
11) E. Aprà, J. Warneke, S. S. Xantheas, X.-B. Wang, “A benchmark photoelectron spectroscopic and theoretical study of the electronic stability of [B12H12]2-”, The Journal of Chemical Physics 150 (16), 164306 (2019); DOI:10.1063/1.5089510
10) J. Warneke, S. Z. Konieczka, G.-L. Hou, E. Aprà, C. Kerpen, F. Keppner, T. C. Schäfer, M. Deckert, Z. Yang, E. J. Bylaska, G. E. Johnson, J. Laskin, S. S. Xantheas, X.-B. Wang, M. Finze, “Properties of perhalogenated closo-B10 and closo-B11 multiply charged anions and a critical comparison with closo-B12 in the gas and the condensed phase”, Physical Chemistry Chemical Physics 21 (11), pp. 5903-5915 (2019); DOI:10.1039/C8CP05313H. Inside back cover
9) G. Liu, E. Miliordos, G. Liu, S. N. Ciborowski, M. Tschurl, U. Boesl, U. Heiz, X. Zhang, S. S. Xantheas, and K. H. Bowen, “Water Activation by Single Metal-Atom Anions”, Communication to the Editor, The Journal of Chemical Physics 149 (22), 221101 (2018); DOI:10.1063/1.5050913
8) B. Peng and K. Kowalski, "Green's function coupled cluster formulations utilizing extended inner excitations", The Journal of Chemical Physics 149 (21), 214102 (2018); DOI:10.1063/1.5046529
7) K. Kowalski, J. Brabec, B. Peng, "Regularized and Renormalized Many-body Techniques for Describing Correlated Molecular Systems: A Coupled-Cluster Perspective", Annual Reports in Computational Chemistry, volume 14, 1st Edition, Elsevier, pp. 3-45 (2018); DOI:10.1016/bs.arcc.2018.06.001
6) J. Zhang, “Origins of the enantioselectivity of a palladium catalyst with BINOL–phosphoric acid ligands”, Organic Biomolecular Chemistry 16 (43), pp. 8064-8071 (2018); DOI:10.1039/C8OB02271B
5) C. M. Johnson, A. E. Doran, S. L. Ten-no, and S. Hirata, “Monte Carlo explicitly correlated many-body Green’s function theory”, The Journal of Chemical Physics 149 (17), 174112 (2018); DOI:10.1063/1.5054610
4) K. Blaziak, D. Tzeli, S. S. Xantheas and E. Uggerud, “The activation of carbon dioxide by first row transition metals (Sc – Zn)”, Physical Chemistry Chemical Physics 20 (39), pp. 25495-25505 (2018); DOI:10.1039/C8CP04231D
3) B. Peng and K. Kowalski, “Green’s Function Coupled-Cluster Approach: Simulating Photoelectron Spectra for Realistic Molecular Systems”, J. Chem. Theory Comput. 14 (8), pp. 4335-4352 (2018); DOI:10.1021/acs.jctc.8b00313
2) K. Kowalski, “Properties of coupled-cluster equations originating in excitation sub-algebras”, The Journal of Chemical Physics 148 (9), 094104 (2018); DOI:10.1063/1.5010693
1) J. Warneke, G.-L. Hou, E. Aprà, C. Jenne, Z. Yang, Z. Qin, K. Kowalski, X.-B. Wang and S. S. Xantheas, “Electronic Structure and Stability of (B12X12)2- (X = F − At): A Combined Photoelectron Spectroscopic and Theoretical Study”, Journal of the American Chemical Society 139 (41), pp. 14749-14756 (2017); DOI:10.1021/jacs.7b08598